Comparative study of iron oxide nanoparticles as-prepared and dispersed in Copaiba oil using Mössbauer spectroscopy with low and high velocity resolution / Oshtrakh M.I., Šepelák V., Rodriguez A.F.R., Semionkin V.A., Ushakov M.V., Santos J.G., Silveira L.B., Marmolejo E.M., Parise M.D.S., Morais P.C. // Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. - 2013. - V. 100, l. . - P. 94-100.

ISSN:
13861425
Type:
Conference Paper
Abstract:
Iron oxide nanoparticles, probably magnetite, as-prepared and dispersed in Copaiba oil were studied by Mössbauer spectroscopy using two different spectrometers: with a low velocity resolution (512 channels) for measurements at 295 and 21 K and with a high velocity resolution (4096 channels) for measurements at 295 and 90 K. The fitting of all measured spectra demonstrated that usual models applied to fit Mössbauer spectra of magnetite and maghemite particles were not suitable. Therefore, the recorded spectra were fitted using a large number of spectral components on the basis of better quality of the fit and linearity of differential spectra. The number of components obtained for the better fit appeared to be different for spectra measured with a low and a high velocity resolution. However, these results demonstrated differences of Mössbauer parameters for iron oxide nanoparticles as-prepared and dispersed in Copaiba oil at applied temperatures. The effect of Copaiba oil molecules on Mössbauer parameters may be a result of the interactions of polar molecules such as kaurinic acid with nanoparticles' surface.
Author keywords:
Hyperfine interactions; Iron oxide nanoparticles; Magnetic fluids; Mössbauer spectroscopy
Index keywords:
Comparative studies; Differential spectra; High velocity; Hyperfine interactions; Iron oxide nanoparticle; Low velocities; Maghemite particles; Mossbauer; Number of components; Oil molecules; Polar mo
DOI:
10.1016/j.saa.2012.02.080
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869505284&doi=10.1016%2fj.saa.2012.02.080&partnerID=40&md5=828d81444633baea9771633eff0e1446
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869505284&doi=10.1016%2fj.saa.2012.02.080&partnerID=40&md5=828d81444633baea9771633eff0e1446
Affiliations Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation; Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation; Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Universidade Federal Do Acre, Rio Branco AC 79900-000, Brazil; Fundação Universidade Federal de Rondònia, Departamento de Física, Ji-Paraná RO 78961-970, Brazil; Universidade de Brasília, Instituto de Física, Núcleo de Física Aplicada, Brasília DF 70910-900, Brazil
Author Keywords Hyperfine interactions; Iron oxide nanoparticles; Magnetic fluids; Mössbauer spectroscopy
Chemicals/CAS Acids; Ferumoxytol, 1317-61-9; Plant Oils; monocrystalline iron oxide nanoparticle
References Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J., (2003) J. Phys. D: Appl. Phys., 36, pp. 167-R181; Morais, P.C., Santos, R.L., Pimenta, A.C.M., Azevedo, R.B., Lima, E.C.D., (2006) Thin Solid Films, 515, p. 266; Pankhurst, Q.A., Thanh, N.K.T., Jones, S.K., Dobson, J., (2009) J. Phys. D: Appl. Phys., 36, p. 224001; Oshtrakh, M.I., (1999) J. Mol. Struct., 480-481, pp. 109-120; Oshtrakh, M.I., (2004) Spectrochim. Acta A: Mol. Biomol. Spectrosc., 60, pp. 217-234; Oshtrakh, M.I., (2005) Hyperfine Interact., 165, pp. 313-320; Morais, P.C., (2008) Hyperfine Interact., 181, pp. 1-12; Salazar-Alvarez, G., Qin, J., Šepelák, V., Bergmann, I., Vasilakaki, M., Trohidou, K.N., Ardisson, J.D., Nogués, J., (2008) J. Am. Chem. Soc., 130, pp. 13234-13239; Papaefthymiou, G.C., Devlin, E., Simopoulos, A., (2009) Phys. Rev. B, 80, p. 024406; Aphesteguy, J.C., Jacobo, S.E., Schegoleva, N.N., Kurlyandskaya, G.V., (2010) J. Alloys Compd., 495, pp. 509-512; Ferreira, R.V., Pereira, I.L.S., Cavalcante, L.C.D., Gamarra, L.F., Carneiro, S.M., Amaro Jr., E., Fabris, J.D., Andrade, A.L., (2010) Hyperfine Interact., 195, pp. 265-274; Coaquira, J.A.H., Cardoso, C.A., Soares, F.Q., Garg, V.K., Oliveira, A.C., Rodriguez, A.F.R., Rabelo, D., Morais, P.C., (2010) Hyperfine Interact., 195, pp. 149-154; Yathindranath, V., Rebbouh, L., Moore, D.F., Miller, D.W., Van Lierop, J., Hegmann, T., (2011) Adv. Funct. Mater., 21, pp. 1457-1464; Sorescu, M., Grabias, A., Brand, R.A., Voss, J., Tarabasanu-Mihaila, D., Diamandescu, L., (2002) J. Magn. Magn. Mater., 246, pp. 399-403; Daou, T.J., Pourroy, G., Bégin-Colin, S., Grenèche, J.M., Ulhaq-Bouillet, C., Legaré, P., Bernhardt, P., Rogez, G., (2006) Chem. Mater., 18, pp. 4399-4404; Grecu, V.V., Constantinescu, S., Grecu, M.N., Olar, R., Badea, M., Turcu, R., (2008) Hyperfine Interact., 183, pp. 205-214; Dézsi, I., Fetzer, C., Gombköt, Á., Szcs, I., Gubicza, J., Ungár, T., (2008) J. Appl. Phys., 103, p. 104312; Cano, L.A., Cagnoli, M.V., Stewart, S.J., Cabanillas, E.D., Romero, E.L., Marchetti, S.G., (2010) Hyperfine Interact., 195, pp. 275-280; Oshtrakh, M.I., Semionkin, V.A., Grokhovsky, V.I., Milder, O.B., Novikov, E.G., (2009) J. Radioanal. Nucl. Chem., 279, pp. 833-846; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., (2009) J. Mol. Struct., 924-926, pp. 20-26; Grokhovsky, V.I., Oshtrakh, M.I., Petrova, E.V., Larionov, M.Yu., Uymina, K.A., Semionkin, V.A., (2009) Eur. J. Mineral., 21, pp. 51-63; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Alenkina, I.V., Novikov, E.G., (2010) Spectroscopy, 24, pp. 593-599; Oshtrakh, M.I., Alenkina, I.V., Milder, O.B., Semionkin, V.A., (2011) Spectrochim. Acta A: Mol Biomol. Spectrosc., 79, pp. 777-783; Santos, J.G., Silveira, L.B., Ferreira, Q.S., Garg, V.K., Oliveira, A.C., Parise, M.S., Morais, P.C., (2010) J. Phys.: Conf. Series, 214, p. 012133; Oshtrakh, M.I., Rodriguez, A.F.R., Semionkin, V.A., Santos, J.G., Milder, O.B., Silveira, L.B., Marmolejo, E.M., Morais, P.C., (2010) J. Phys.: Conf. Series, 217, p. 012018; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., (2009) J. Radioanal. Nucl. Chem., 281, pp. 63-67; Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G., (2010) Bull. Russ. Acad. Sci.: Phys., 74, pp. 416-420; Panda, R.N., Gajbhiye, N.S., Balaji, G., (2001) J. Alloys Compd., 326, pp. 50-53; Goya, G.F., Berquo, T.S., Fonseca, F.C., Morales, M.P., (2003) J. Appl. Phys., 94, pp. 3520-3528; Wang, J., Yao, M., Xu, G., Cui, P., Zhao, J., (2009) Mater. Chem. Phys., 113, pp. 6-9; Yin, H.-R., Jiang, J.-S., (2005) J. Mater. Sci., 40, pp. 3013-3015; Papaefthymiou, G.C., Rabias, I., Fardis, M., Devlin, E., Boukos, N., Tsitrouli, D., Papavassiliou, G., (2009) Hyperfine Interact., 190, pp. 59-66
Correspondence Address Oshtrakh, M.I.; Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation; email: oshtrakh@mail.utnet.ru
CODEN SAMCA
PubMed ID 22465304
Language of Original Document English
Abbreviated Source Title Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
Source Scopus