References |
Scorzelli, R.B., Application of the Mössbauer effect to study of meteorites-a review (1991) Hyperfine Interact., 66, pp. 249-258; Scorzelli, R.B., A study of phase stability in invar Fe-Ni alloys obtained by non-conventional methods (1997) Hyperfine Interact., 110, pp. 143-150; Rancourt, D.G., Lagarec, K., Densmore, A., Dunlap, R.A., Goldstein, J.I., Reisener, R.J., Scorzelli, R.B., Experimental proof of the distinct electronic structure of a new meteoritic Fe-Ni alloy phase (1999) J. Magn. Magn. Mater., 191, pp. L255-L260; Oshtrakh, M.I., Milder, O.B., Grokhovsky, V.I., Semionkin, V.A., Hyperfine interactions in iron meteorites: comparative study by Mössbauer spectroscopy (2004) Hyperfine Interact., 158, pp. 365-370; Grokhovsky, V.I., Oshtrakh, M.I., Milder, O.B., Semionkin, V.A., Mössbauer study of iron meteorites and their corrosion products (2005) Bull. Russ. Acad. Sci. Phys., 69, pp. 1710-1716; Grokhovsky, V.I., Oshtrakh, M.I., Milder, O.B., Semionkin, V.A., Mössbauer spectroscopy of iron meteorite Dronino and products of its corrosion (2005) Hyperfine Interact., 166, pp. 671-677; Abdu, A.A., Ericsson, T., Mössbauer spectroscopy, X-ray diffraction, and electron microprobe analysis of the New Halfa meteorite (1997) Meteorit. Planet. Sci., 32, pp. 373-375; Verma, H.C., Rawat, A., Paliwal, B.S., Tripathi, R.P., Mössbauer spectroscopic studies of an oxidized ordinary chondrite fallen at Itawa-Bhopji, India (2002) Hyperfine Interact., 142, pp. 643-652; Zhiganova, E.V., Oshtrakh, M.I., Milder, O.B., Grokhovsky, V.I., Semionkin, V.A., Mezentsev, A.V., Mössbauer spectroscopy of ordinary chondrites: an analysis of the metal phases (2005) Hyperfine Interact., 166, pp. 665-670; Scorzelli, R.B., Souza Azevedo, I., Pereira, R.A., Mössbauer spectroscopy study of the metallic particles extracted from the Antarctic chondrite Allan Hils-769 (1994) Proc. NIPR Symp. Antarct. Meteorit., 7, pp. 299-303; Kong, P., Ebihara, M., Metal phases of L chondrites: their formation and evolution in the nebula and in the parent body (1996) Geochim. Cosmochim. Acta., 60, pp. 2667-2680; Bahgat, A.A., Ahmed, M.A., Barakat, A.A., Ramadan, T.M., Mössbauer study of El-Bahrain meteorite (2000) J. Radioanal. Nucl. Chem., 245, pp. 615-618; Ludwig, A., Zarek, W., Popiel, E., The investigations of chondritic meteorites by X-ray diffraction and Mössbauer effect methods (2001) Acta. Phys. Pol. A, 100, pp. 761-765; Zhiganova, E.V., Oshtrakh, M.I., Study of metal extracted from Tzarev L5 Chondrite by Mössbauer spectroscopy and metallography (abstract) (2006) Meteort. Planet. Sci., 41 (SUPPL), pp. A198; E.V. Zhiganova, M.I. Oshtrakh, V.I. Grokhovsky, V.A Semionkin, Study of metal grains extracted from chondrite Tzarev L5 by Mössbauer spectroscopy with high velocity resolution, in: XIV International Conference on Hyperfine Interactions & XVIII International Symposium on Nuclear Quadrupole Interactions, Book of Abstracts, Iguassu Falls (2007), p. 111; S.M. Irkaev, V.V. Kupriyanov, V.A. Semionkin, M.M. Sokolov, Method of Registration of Nuclear γ-Resonance, British Patent No. 10745 (7 May 1987); M.E. Vahonin, S.M. Irkaev, V.V. Kupriyanov, V.A. Semionkin, Mössbauer spectrometer. British Patent No. 871294 (1988); Morozov, M., Brinkmann, C., Lottermoser, W., Tippelt, G., Amthauer, G., Kroll, H., Octahedral cation partitioning in Mg,Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5Fe2+ 0.5)2SiO4 (Fa50) (2005) Eur. J. Miner., 17, pp. 495-500; Pasternak, M.P., Taylor, R.D., Jeanloz, R., Bohlen, S.R., Magnetic ordering transition in Mg0.9Fe0.lSiO3 orthopyroxene (1992) Am. Miner., 77, pp. 901-903; Zhiganova, E.V., Grokhovsky, V.I., Oshtrakh, M.I., Study of ordinary chondrites by Mössbauer spectroscopy with high velocity resolution: identification of M1 and M2 sites in silicate phases (2007) Phys. Stat. Sol. (a), 204, pp. 1185-1191; Migdisova, L.F., Zaslavskaya, N.I., Ivanov, A.V., Grokhovsky, V.I., Tsarev meteorite: the new shock-metamorphized chondrite (1982) Lunar Planet. Sci., 13, pp. 518-519; Grokhovsky, V.I., Gorelova, E.A., Zaslavskaya, V.I., Composition and structure of nickel iron in chondrite Tsarev (1982) Meteoritika (Moscow), 41, pp. 37-40; Leroux, H., Doukhan, J.-C., Perron, C., Microstructures of metal grains in ordinary chondrites: implications for their thermal history (2000) Meteorit. Planet. Sci., 35, pp. 569-580; Vincze, I., Campbell, I.A., Meyer, A.J., Hyperfine field and magnetic moments in b.c.c. Fe-Co and Fe-Ni (1974) Solid State Commun., 15, pp. 1495-1499; Albertsen, J.F., Knudsen, J.M., Roy-Poulsen, N.O., Vistisen, L., Meteorites and thermodynamic equilibrium in f.c.c. iron-nickel alloys (25-50% Ni) (1980) Phys. Scr., 22, pp. 171-175; Baldokhin, Yu.V., Kolotyrkin, P.Ya., Petrov, Yu.I., Shafranovsky, E.A., On the exhibition of high and low spin states of the fcc phase in ultrafine Fe and Fe-Ni particles (1994) Phys. Lett. A, 189, pp. 137-139 |