A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution / Oshtrakh M.I., Petrova E.V., Grokhovsky V.I., Semionkin V.A. // Meteoritics and Planetary Science. - 2008. - V. 43, l. 5. - P. 941-958.

ISSN:
10869379
Type:
Article
Abstract:
An improvement in the velocity resolution and quality of Mössbauer spectra has been applied to a group of ordinary chondrites. This improvement permitted us to carry out a more detailed study of the iron bearing phases in these samples than has previously been possible. Mössbauer spectra of 11 ordinary chondrites of L and H chemical groups were measured using 4096 channels and presented for further analysis in 1024 channels. Subspectra of the metal grains of several chondrites demonstrated the presence of at least two magnetic sextets related to the main Fe(Ni, Co) phases. Moreover, Mössbauer study of extracted metal grains from Tsarev L5 revealed three sextets and one singlet spectral components related to various α-Fe(Ni, Co), α′-Fe(Ni, Co), α2-Fe(Ni, Co), and γ-Fe(Ni, Co) phases. Each subspectrum of olivine and pyroxene in Mössbauer spectra of ordinary chondrites was fitted by superposition of two quadrupole doublets related to M1 and M2 sites in minerals for the first time. An analysis of relative areas and Mössbauer hyperfine parameters was performed and some differences for L and H chondrites as well as for M1 and M2 sites were observed. Mössbauer parameters of troilite and oxidized iron were analyzed. In contrast to a previous study with 512-channel spectra, the presence of oxidized iron was found in all chondrites. © The Meteoritical Society, 2008.
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-54449086979&partnerID=40&md5=f711f29c83141bb7b815e4e385cff4ee
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-54449086979&partnerID=40&md5=f711f29c83141bb7b815e4e385cff4ee
Affiliations Faculty of Physical Techniques and Devices for Quality Control, Ural State Technical University-UPI, Mira str. 19, Ekaterinburg 620002, Russian Federation; Faculty of Experimental Physics, Ural State Technical University-UPI, Ekaterinburg 620002, Russian Federation
References Abdu, Y.A., Ericsson, T., Mössbauer spectroscopy, X-ray diffraction, and electron microprobe analysis of the New Halfa meteorite (1997) Meteoritics & Planetary Science, 32, pp. 373-375; Abdu, Y.A., Ericsson, T., Annersten, H., Dubrovinskaia, N.A., Dubrovinsky, L.S., Gismelseed, A.M., Mössbauer studies on the metallic phases of Al Kidirate and New Halfa meteorites (2002) Hyperfine Interactions, 5, pp. 375-378; Al-Rawas, A.D., Gismelseed, A.M., Yousif, A.A., Elzain, M.E., Worthing, M.A., Al-Kathiri, A., Gnos, E., Steele, D.A., Studies on Uruq al Hadd meteorite (2007) Planetary and Space Science, 55, pp. 859-863; Bahgat, A.A., Ahmed, M.A., Barakat, A.A., Ramadan, T.M., Mössbauer study of El-Bahrain meteorite (2000) Journal of Radioanalytical and Nuclear Chemistry, 245, pp. 615-618; Bland, P.A., Berry, F.J., Smith, T.B., Skinner, S.J., Pillinger, C.T., The flux of meteorites to the Earth and weathering in hot desert ordinary chondrite finds (1996) Geochimica et Cosmochimica Acta, 60, pp. 2053-2059; Bland, P.A., Kelley, S.P., Berry, F.J., Cadogan, J.M., Pillinger, C.T., Artificial weathering of the ordinary chondrite Allegan: Implications for the presence of Cl- as a structural component in akaganeite (1997) American Mineralogist, 82, pp. 1187-1197; Bland, P.A., Berry, F.J., Pillinger, C.T., Rapid weathering in Holbrook: An iron-57 Mössbauer spectroscopy study (1998) Meteoritics & Planetary Science, 33, pp. 127-129; Bland, P.A., Sexton, A.S., Jull, A.J.T., Bevan, A.W.R., Berry, F.J., Thornley, D.M., Astin, T.R., Pillinger, C.T., Climate and rock weathering: A study of terrestrial age dated ordinary chondritic meteorites from hot desert regions (1998) Geochimica et Cosmochimica Acta, 62, pp. 3169-3184; Calogero, S., Stievano, L., Benoit, P.H., Mössbauer and thermoluminescence studies of meteorites from Frontier Mountain, Antarctica (1999) Journal of Geophysical Research, 104, pp. 30,817-30,823; Danon, J., Scorzelli, R.B., Azevedo, I.S., Michel-Lévy, M.C., Iron-nickel superstructure in metal particles of chondrites (1979) Nature, 281, pp. 469-471; De Grave, E., Eeckhout, S.G., Mössbauer studies of some magnetic clinopyroxenes (2003) Hyperfine Interactions, 148-149, pp. 263-274; De Grave, E., Eeckhout, S.G., 57Fe Mössbauer-effect studies of Ca-rich, Fe-bearing clinopyroxenes: Part III. Diopside (2003) American Mineralogist, 88, pp. 1145-1152; De Grave, E., Persoons, R.M., Vandenberghe, R.E., de Bakker, P.M.A., Mössbauer study of the high-temperature Co substituted magnetites, CoxFe3-xO4. I. χ ≤ 0.04 (1993) Physical Review B, 47, pp. 5881-5893; De Oliveira, J.C.P., da Costa Jr., M.I., Vasquez, A., Roisenberg, A., Vieira Jr., N., Chies, J.O., Mössbauer study of the Putinga chondrite (1988) Physica Scripta, 37, pp. 185-187; Dodd, R.T., (1981) Meteorites: A petrological-chemical synthesis, , Cambridge: Cambridge University Press. 368 p; Dunlap, R.A., A Mössbauer effect investigation of the enstatite chondrite from Abee, Canada (1997) Hyperfine Interactions, 110, pp. 209-215; Dyar, M.D., Klima, R.L., Lindsley, D., Pieters, C.M., Effects of differential recoil-free fraction on ordering and site occupancies in Mössbauer spectroscopy of orthopyroxenes (2007) American Mineralogist, 92, pp. 424-428; Eeckhout, S.G., De Grave, E., McCammon, C.A., Vochten, R., Temperature dependence of the hyperfine parameters of synthetic P21/c Mg-Fe clinopyroxenes along the MgSiO3-FeSiO3 join (2000) American Mineralogist, 85, pp. 943-952; Forder, S.D., Bland, P.A., Galazka-Friedman, J., Urbanski, M., Gontarz, Z., Milczarek, M., Bakun-Czubarow, N., A Mössbauer study of meteorites - A possible criterion to identify meteorites from the same parent body? (2001) Hyperfine Interactions C, 5, pp. 405-408; Gismelseed, A.M., Khangi, F., Ibrahim, A., Yousif, A.A., Worthing, M.A., Rais, A., Elzain, M.E., Sutherland, H.H., Studies of Al Kidirate and Kapoeta meteorites (1994) Hyperfine Interactions, 91, pp. 551-555; Gismelseed, A.M., Worthing, M.A., Yousif, A.A., Elzain, M.E., Al Rawas, A.D., Kamal, H.M., Mineralogical and Mössbauer studies on the paramagnetic separate of Al-Kidirate meteorite (2004) Physica Status Solidi (a), 201, pp. 482-485; Gismelseed, A.M., Bashir, S., Worthing, M.A., Yousif, A.A., Elzain, M.E., AL Rawas, A.D., Widatallah, H.M., Studies and characterizations of the Al Zarnkh meteorite (2005) Meteoritics & Planetary Science, 40, pp. 255-259; Grandjean, F., Long, G.J., Hautot, D., Whitney, D.L., A Mössbauer spectral study of the Jilin meteorite (1998) Hyperfine Interactions, 116, pp. 105-115; Grokhovsky, V.I., Oshtrakh, M.I., Milder, O.B., Semionkin, V.A., Mössbauer study of iron meteorites and their corrosion products (1710) Bulletin of the Russian Academy of Sciences, Physics, 69. , 2005a; Grokhovsky, V.I., Oshtrakh, M.I., Milder, O.B., Semionkin, V.A., Mössbauer spectroscopy of iron meteorite Dronino and products of its corrosion (2005) Hyperfine Interactions, 166, pp. 671-677; Irkaev, S.M., Kupriyanov, V.V., Semionkin, V.A., Sokolov, M.M., Method of registration of nuclear γ-resonance (1987), British Patent No. 10745; Irkaev, S.M., Kupriyanov, V.V., Semionkin, V.A., Sokolov, M.M., Method of gamma-ray resonance spectroscopy (1990), British Patent No. 2204385; Jarosewich, E., Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses (1990) Meteoritics & Planetary Science, 25, pp. 323-337; Kong, P., Ebihara, M., Metal phases of L chondrites: Their formation and evolution in the nebula and in the parent body (1996) Geochimica et Cosmochimica Acta, 60, pp. 2667-2680; Kong, P., Ebihara, M., Nagahara, H., Endo, K., Chemical characteristics of metal phases of the Richardton H5 chondrite (1995) Earth and Planetary Science Letters, 136, pp. 407-419; Kruse, O., Mössbauer and X-ray study of the effects of vacancy concentration in synthetic hexagonal pyrrhotites (1990) American Mineralogist, 75, pp. 755-763; Leroux, H., Doukhan, J.-C., Perron, C., Microstructures of metal grains in ordinary chondrites: Implications for their thermal histories (2000) Meteoritics & Planetary Science, 35, pp. 569-580; Ludwig, A., Zarek, W., Popiel, E., The investigations of chondritic meteorites by X-ray diffraction and Mössbauer effect methods (2001) Acta Physica Polonica A, 100, pp. 761-765; Malysheva, T.V., (1975) Mössbauer effect in geochemistry and cosmochemistry, , Moscow: Nauka. 166 p; Menzies, O.N., Bland, P.A., Berry, F.J., Cressey, G., A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism (2005) Meteoritics & Planetary Science, 40, pp. 1023-1042; Migdisova, L.F., Zaslavskaya, N.I., Ivanov, A.V., Grokhovsky, V.I., Tsarev meteorite: The new shock-metamorphized chondrite (1982) 13th Lunar and Planetary Science Conference, pp. 518-519; Morozov, M., Brinkmann, C., Grodzicki, M., Lottermoser, W., Tippelt, G., Amthauer, G., Kroll, H., Octahedral cation partitioning in Mg,Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5 Fe2+ 0.5)2 SiO4 (Fa50) (2005) Hyperfine Interactions, 166, pp. 573-578; Morozov, M., Brinkmann, C., Lottermoser, W., Tippelt, G., Amthauer, G., Kroll, H., Octahedral cation partitioning in Mg,Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5 Fe2+ 0.5)2 SiO4 (Fa50) (2005) European Journal of Mineralogy, 17, pp. 495-500; Murad, E., Johnston, J.H., Iron oxides and oxyhydroxides (1987) Mössbauer spectroscopy applied to inorganic chemistry, 2, pp. 507-582. , edited by Long G. J. New York: Plenum Publishing. pp; Ortalli, I., Pedrazzi, G., Study of the Torino meteorite (1990) Hyperfine Interactions, 57, pp. 2275-2278; Oshtrakh, M.I., Zhiganova, E.V., Identification of M1 and M2 sites in olivine and pyroxene by Mössbauer spectroscopy of ordinary chondrites (2006) Meteoritics & Planetary Science, 41, pp. A136; Oshtrakh, M.I., Semionkin, V.A., Prokopenko, P.G., Milder, O.B., Livshits, A.B., Kozlov, A.A., Hyperfine interactions in the iron cores from various pharmaceutically important iron-dextran complexes and human ferritin: A comparative study by Mössbauer spectroscopy (2001) International Journal of Biological Macromolecules, 29, pp. 303-314; Oshtrakh, M.I., Milder, O.B., Grokhovsky, V.I., Semionkin, V.A., Hyperfine interactions in iron meteorites: Comparative study by Mössbauer spectroscopy (2004) Hyperfine Interactions, 158, pp. 365-375; Paliwal, B.S., Tripathi, R.P., Verma, H.C., Sharma, S.K., Classification of the Didwana-Rajod meteorite: A Mössbauer spectroscopic study (2000) Meteoritics & Planetary Science, 35, pp. 639-642; Pasternak, M.P., Taylor, R.D., Jeanloz, R., Bohlen, S.R., Magnetic ordering transition in Mg0.9 Fe0.1SiO3 orthopyroxene (1992) American Mineralogist, 77, pp. 901-903; Scorzelli, R.B., Azevedo, I.S., Pereira, R.A., Mössbauer spectroscopy study of the metallic particles extracted from the Antarctic chondrite Allan Hills 769 (1994) Proceedings of the NIPR Symposium on Antarctic Meteorites, 7, pp. 299-303; Scorzelli, R.B., Michel-Levy, M.C., Gilabert, E., Lavielle, B., Azevedo, I.S., Vieira, V.W., Costa, T.V.V., Araujo, M.A.B., The Campos Sales meteorite from Brazil: A lightly shocked L5 chondrite fall (1998) Meteoritics & Planetary Science, 33, pp. 1335-1337; Semionkin, V.A., Irkaev, S.M., Milder, O.B., Oshtrakh, M.I., Methodological features of biomedical application of Mössbauer spectroscopy (2005) Mössbauer Effect Reference and Data Journal, 28, pp. 288-291; Skinner, W.M., Nesbitt, H.W., Pratt, A.R., XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS) (2004) Geochimica et Cosmochimica Acta, 68, pp. 2259-2263; Solberg, T.C., Burns, R.G., Iron Mössbauer spectral study of weathered Antarctic and SNC meteorites (1989) Proceedings, 19th Lunar and Planetary Science Conference, pp. 313-322; Sprenkel-Segel, E.L., Hanna, S.S., Mössbauer analysis of iron in stone meteorites (1964) Geochimica et Cosmochimica Acta, 28, pp. 1913-1931; Vahonin, M.E., Irkaev, S.M., Kupriyanov, V.V., Semionkin, V.A., Spectrometer de Mössbauer. (1988), French Patent Fr 2616539-B1, 8708228; Vahonin, M.E., Irkaev, S.M., Kupriyanov, V.V., Semionkin, V.A., Mössbauer spectrometer. (1988), British Patent No. 871294; Van Alboom, A., De Grave, E., Vandenberghe, R.E., Study of the temperature dependence of the hyperfine parameters in two orthopyroxenes by 57Fe Mössbauer spectroscopy (1993) Physics and Chemistry of Minerals, 20, pp. 263-275; Verma, H.C., Rawat, A., Paliwal, B.S., Tripathi, R.P., Mössbauer spectroscopic studies of an oxidized ordinary chondrite fallen at Itawa-Bhopji, India (2002) Hyperfine Interactions, 142, pp. 643-652; Verma, H.C., Jee, K., Tripathi, R.P., Systematics of Mössbauer absorption areas in ordinary chondrites and applications to newly fallen meteorite in Jodhpur, India (2003) Meteoritics & Planetary Science, 38, pp. 963-967; Verma, H.C., Tripathi, R.P., Anomalous Mössbauer parameters in the second generation regolith Ghubara meteorite (2004) Meteoritics & Planetary Science, 39, pp. 1755-1759; Vincze, I., Campbell, I.A., Meyer, A.J., Hyperfine field and magnetic moments in b.c.c. Fe-Co and Fe-Ni (1974) Solid State Communications, 15, pp. 1495-1499; Wang, L., Moon, N., Zhang, Y., Dunham, W.R., Essene, E.J., Fe-Mg order-disorder in orthopyroxenes (2005) Geochimica et Cosmochimica Acta, 69, pp. 5777-5788; Zhang, Y., Stevens, J.G., Li, Y., Li, Z., Mössbauer study of the Jilin and Xinyang meteorites (1994) Hyperfine Interactions, 91, pp. 547-550; Zhiganova, E.V., Oshtrakh, M.I., Study of metal extracted from Tsarev L5 chondrite by Mössbauer spectroscopy and metallography (2006) Meteoritics & Planetary Science, 41, pp. A198; Zhiganova, E.V., Oshtrakh, M.I., Milder, O.B., Grokhovsky, V.I., Semionkin, V.A., Mezentsev, A.V., Mössbauer spectroscopy of ordinary chondrites: An analysis of the metal phases (2005) Hyperfine Interactions, 166, pp. 665-670; Zhiganova, E.V., Grokhovsky, V.I., Oshtrakh, M.I., Study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution: Identification of M1 and M2 sites in silicate phases (2007) Physica Status Solidi (a), 204, pp. 1185-1191
Correspondence Address Oshtrakh, M.I.; Faculty of Physical Techniques and Devices for Quality Control, Ural State Technical University-UPI, Mira str. 19, Ekaterinburg 620002, Russian Federation; email: oshtrakh@mail.utnet.ru
CODEN MPSCF
Language of Original Document English
Abbreviated Source Title Meteorit. Planet. Sci.
Source Scopus