Mössbauer spectroscopy with high velocity resolution in the meteorites study / Grokhovsky V.I., Zhiganova E.V., Larionov M.Yu., Uymina K.A., Oshtrakh M.I. // Physics of Metals and Metallography. - 2008. - V. 105, l. 2. - P. 177-187.

ISSN:
0031918X
Type:
Article
Abstract:
The results of the study of various meteorites (iron, ordinary chondrites and carbonaceous chondrites) by Mössbauer spectroscopy with high velocity resolution at room temperature are presented. Different Fe(Ni,Co) phases in a metal component and spectral components that are related to structurally nonequivalent M1 and M2 positions in olivine and pyroxene have been revealed in the spectra of eleven ordinary chondrites as a result of a velocity-resolution increase. The spectra of two types of iron phosphides (rhabdite and schreibersite) extracted from the Sikhote-Alin iron meteorite have been measured for the first time, a difference in the magnetic hyperfine structure of 57Fe nuclei in the rhabdite and the schreibersite has been observed, and a preliminary estimation of their parameters has been made. The measured-for-the-first-time Mössbauer CH/CB spectra of the Isheevo chondrite demonstrated some differences between the internal and surface parts of the meteorite. The parameters obtained allowed us to detect the presence of three Fe(Ni,Co) phases in the Isheevo metal. © 2008 MAIK Nauka.
Author keywords:
Index keywords:
Iron compounds; Mossbauer spectroscopy; Phase transitions; Velocity control; Carbonaceous chondrites; Pyroxene; Meteorites
DOI:
10.1007/s11508-008-2010-8
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-43349099790&doi=10.1007%2fs11508-008-2010-8&partnerID=40&md5=b414c134ea4382968c87e76e1ccb6d2e
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-43349099790&doi=10.1007%2fs11508-008-2010-8&partnerID=40&md5=b414c134ea4382968c87e76e1ccb6d2e
Affiliations Ural State Technical University (UPI), ul. Mira 19, Ekaterinburg 620002, Russian Federation
References Jarosewich, E., Chemical Analyses of Meteorites: A Compilation of Stony and Iron Meteorite Analyses (1990) Meteor. Planet. Sci., 25, pp. 323-337; De Grave, E., Persoons, R.M., Vandenberghe, R.E., De Bakker, P.M.A., Mössbauer Study of the High-Temperature Phase of Co-Substituted Magnetites, CoxFe3-x O4. I. x 0.04 (1993) Phys. Rev. B, 47, pp. 5881-5893; Irkaev, S.M., Kupriyanov, V.V., Semionkin, V.A., Sokolov, M.M., (1978) Method of Registration of Nuclear Resonance, , British Patent, No. 10 745; Vahonin, M.E., Irkaev, S.M., Kupriyanov, V.V., Semionkin, V.A., (1988) Spectrometer de Mössbauer, , French Patent, No. 8 708 228; Vahonin, M.E., Irkaev, S.M., Kupriyanov, V.V., Semionkin, V.A., (1988) Mössbauer Spectrometer, , British Patent, No. 871 294; Irkaev, S.M., Kupriyanov, V.V., Semionkin, V.A., Sokolov, M.M., (1990) Method of Gamma-Ray Resonance Spectroscopy, , British Patent, No. 2 204 385; Abdu, Y.A., Ericsson, T., Mössbauer Spectroscopy, X-ray Diffraction, and Electron Microprobe Analysis of the New Halfa Meteorite (1997) Meteor. Planet. Sci., 32, pp. 373-375; Dunlap, R.A., A Mössbauer Effect Investigation of the Enstatite Chondrite from Abee, Canada (1997) Hyperfine Interact, 110, pp. 209-215; Verma, H.C., Rawat, A., Paliwal, B.S., Tripathi, R.P., Mössbauer Spectroscopic Studies of an Oxidized Ordinary Chondrite Fallen at Itawa-Bhopji, India (2002) Hyperfine Interact, 142, pp. 643-652; Zhiganova, E.V., Oshtrakh, M.I., Milder, O.B., Mössbauer Spectroscopy of Ordinary Chondrites: An Analysis of the Metal Phases (2005) Hyperfine Interact, 166, pp. 665-670; Zhiganova, E.V., Grokhovsky, V.I., Oshtrakh, M.I., Study of Ordinary Chondrites by Mössbauer Spectroscopy with High Velocity Resolution: Identification of M1 and M2 Sites in Silicate Phases (2007) Phys. Status Solidi A, 204, pp. 1185-1191; Morozov, M., Brinkmann, C., Grodzicki, M., Octahedral Cation Partitioning in Mg,Fe2+-Olivine. Mössbauer Spectroscopic Study of Synthetic (Mg0.5Fe 0.5 2+ )2SiO4 (Fa50) (2005) Hyperfine Interact, 166, pp. 573-578; Morozov, M., Brinkmann, C., Lottermoser, W., Octahedral Cation Partitioning in Mg,Fe2+-Olivine. Mössbauer Spectroscopic Study of Synthetic (Mg0.5Fe 0.5 2+ )2SiO4 (Fa50) (2005) Eur. J. Mineral., 17, pp. 495-500; Pasternak, M.P., Taylor, R.D., Jeanloz, R., Bohlen, S.R., Magnetic Ordering Transition in Mg0.9Fe0.1SiO 3 Orthopyroxene (1992) Am. Mineral., 77, pp. 901-903; Van Alboom, A., De Grave, E., Vandenberghe, R.E., Study of the Temperature Dependence of the Hyperfine Parameters in Two Orthopyroxenes by 57Fe Mössbauer Spectroscopy (1993) Phys. Chem. Minerals, 20, pp. 263-275; Eeckhout, S.G., De Grave, E., McCammon, C.A., Vochten, R., Temperature Dependence of the Hyperfine Parameters of Synthetic P2 1/c Mg-Fe Clinopyroxenes along the MgSiO3-FeSiO 3 Join (2000) Am. Mineral., 85, pp. 943-952; Wang, L., Moon, N., Zhang, Y., Fe-Mg Order-Disorder in Orthopyroxenes (2005) Geochim. Cosmochim. Acta, 69, pp. 5777-5788; Oshtrakh, M.I., Milder, O.B., Grokhovsky, V.I., Semionkin, V.A., Hyperfine Interactions in Iron Meteorites: Comparative Study by Mössbauer Spectroscopy (2004) Hyperfine Interact., 158, pp. 365-375; Lisher, E., Wilkinson, C., Ericsson, T., Study of the Magnetic Structure of Fe3P (1974) Proc. of the Int. Conf. on Magnetism 1973, , Nauka Moscow; Ouseph, P.J., Groskreutz, H.E., Johnson, A.A., Mössbauer Spectra for Iron Bearing Phases in the Meteorite Toluca (1979) Meteoritics, 14, pp. 97-108
Correspondence Address Grokhovsky, V. I.; Ural State Technical University (UPI), ul. Mira 19, Ekaterinburg 620002, Russian Federation
Language of Original Document English
Abbreviated Source Title Phys. Met. Metallogr.
Source Scopus