Thermodynamics of dipolar square-well fluids / Turysheva E.V., Solovyova A.Y., Elfimova E.A. // Fluid Phase Equilibria. - 2015. - V. 386, l. . - P. 125-133.

ISSN:
03783812
Type:
Article
Abstract:
The thermodynamic properties of a dipolar square-well fluid in zero external magnetic field are studied using theory and simulations. The theory is based on the virial expansion of the Helmholtz free energy. The second and third virial coefficients are calculated as functions of the dimensionless temperature T*, the reduced dipolar interaction parameter μ, and the potential well width λ. The formulas are compared to results from Mayer-sampling calculations. The analytical expressions for the virial coefficients are incorporated in to various forms of virial expansion for the Helmholtz free energy and the equation of state. Thermodynamic functions are tested against results from Monte Carlo simulations for subcritical vapor-liquid transition parameters T*≥5 and 10.5; μ≤4; λ≤2 over the range of the particle volume fraction ϕ≤0.4. Finally, predictions of the critical parameters for the condensation transition are obtained on the basis of the virial expansion of the Helmholtz free energy and compared with computer-simulation results and the theories available in the literature. Although the critical parameter values formally lie beyond the applicability of the theory developed in this work they fall in the range of values previously obtained by other methods. Accurate theoretical prediction of the critical parameters for dipolar square-well fluids remains as a challenge. © 2014 Elsevier B.V. All rights reserved.
Author keywords:
Dipolar square-well fluid; Equation of state; Free energy; Vapor-liquid phase transition; Virial expansion
Index keywords:
Computer simulation; Equations of state of liquids; Intelligent systems; Liquids; Monte Carlo methods; Phase transitions; Critical parameter values; Dimensionless temperatures; Equation of state; Part
DOI:
10.1016/j.fluid.2014.11.021
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84918841801&doi=10.1016%2fj.fluid.2014.11.021&partnerID=40&md5=9ffcf1174741a2d5ee7959f410cb7f07
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84918841801&doi=10.1016%2fj.fluid.2014.11.021&partnerID=40&md5=9ffcf1174741a2d5ee7959f410cb7f07
Affiliations Institute of Mathematics and Computer Sciences, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, Russian Federation
Author Keywords Dipolar square-well fluid; Equation of state; Free energy; Vapor-liquid phase transition; Virial expansion
References Pople, J.A., (1954) Proc. R. Soc. A, 221, pp. 508-516; Gubbins, K.E., Gray, C.G., (1972) Mol. Phys., 23, pp. 187-191; Ananth, M.S., Gubbins, K.E., Gray, C.G., (1974) Mol. Phys., 28, pp. 1005-1030; Stell, G., Rasaiah, J.C., Narang, H., (1974) Mol. Phys., 27, pp. 1393-1414; Rushbrooke, G.S., Stell, G., Høye, J.S., (1973) Mol. Phys., 26, pp. 1199-1215; Melnyk, T.W., Smith, W.R., (1974) Chem. Phys. Lett., 28, pp. 213-216; Teixeira, P.I.C., (2013) J. Phys.: Condens. Matter, 25, p. 195102; Rovigatti, L., Kantorovich, S.S., Ivanov, A.O., Tavares, J.M., Sciortino, F., (2013) J. Chem. Phys., 139, p. 134901; Kalyuzhnyi, Y.V., Hlushak, S., Cummings, P.T., (2012) Conden. Matter Phys., 15, p. 23605; Gubbins, K.E., Twu, C.H., (1978) Chem. Eng. Sci., 33, pp. 863-878; Flytzani-Stephanopoulos, M., Gubbins, K.E., Gray, C.G., (1975) Mol. Phys., 30, pp. 1649-1676; Kraska, T., Gubbins, K.E., (1996) Ind. Eng. Chem. Res., 35, pp. 4727-4737; Kraska, T., Gubbins, K.E., (1996) Ind. Eng. Chem. Res., 35, pp. 4738-4746; Ganzenmüller, G., Patey, G.N., Camp, P.J., (2009) Mol. Phys., 107, pp. 403-413; Kalyuzhnyi, Y.V., Protsykevytch, I.A., Ganzenmüller, G., Camp, P.J., (2008) EPL, 84, p. 26001; Lamperski, S., Górniak, R.G., (2012) Fluid Phase Equilib., 317, pp. 29-35; Máté, Z., Szalai, I., (2010) Fluid Phase Equilib., 289, pp. 54-60; Alavi, F., Feyzi, F., (2008) Mol. Phys., 106, pp. 161-174; Martin-Betancourt, M., Romero-Enrique, J.M., Rull, L.F., (2009) Mol. Phys., 107, pp. 563-570; Benavides, A.L., Lago, S., Garzón, B., Rull, L.F., Del Río, F., (2005) Mol. Phys., 103, pp. 3243-3251; Benavides, A.L., Guevara, Y., Del Río, F., (1994) Physica A, 202, pp. 420-437; Del Río, F., Benavides, A.L., Guevara, Y., (1995) Physica A, 215, pp. 10-20; Elfimova, E.A., Ivanov, A.O., Camp, P.J., (2012) Phys. Rev. E, 86, p. 021126; Stell, G., Rasaiah, J.C., Narang, H., (1972) Mol. Phys., 23, pp. 393-406; Elfimova, E.A., Ivanov, A.O., Camp, P.J., (2013) Phys. Rev. E, 88, p. 042310; Singh, J.K., Kofke, D.A., (2004) Phys. Rev. Lett., 92, p. 220601; Aim, K., Nezbeda, I., (1983) Fluid Phase Equilib., 12, pp. 235-251; Nezbeda, I., Smith, W.R., (2004) Fluid Phase Equilib., 216, pp. 183-186; Krejčí, J., Nezbeda, I., (2012) Fluid Phase Equilib., 314, pp. 156-160; Camp, P.J., (2013) Private communication; Balescu, R., (1975) Equilibrium and Nonequilibrium Statistical Mechanics, , Wiley-Interscience Publ., New York; Hansen, J.-P., McDonald, I.R., (2006) Theory of Simple Liquids, , Academic Press, London; Ivanov, A.O., Novak, E.V., (2007) Colloid J., 69, pp. 302-311; Joslin, C.G., (1981) Mol. Phys. E, 42, pp. 1507-1518; Kiselev, S.B., Ely, J.F., Lue, L., Elliott, J.R., (2002) Fluid Phase Equilib., 200, pp. 121-145; Carnagan, N.F., Starling, K.E., (1969) J. Chem. Phys., 51, pp. 635-636; Allen, M.P., Tildesley, D.J., (1987) Computer Simulation of Liquids, , Oxford University Press, Oxford; Neumann, M., (1983) Mol. Phys., 50, pp. 841-858; Benavides, A.L., Guevara, Y., (2003) J. Phys. Chem. B, 107, pp. 9477-9483; Elfimova, E.A., Ivanov, A.O., (2010) JETP, 111, pp. 146-156
Correspondence Address Elfimova, E.A.; Institute of Mathematics and Computer Sciences, Ural Federal University, 51 Lenin Avenue, Russian Federation
Publisher Elsevier
CODEN FPEQD
Language of Original Document English
Abbreviated Source Title Fluid Phase Equilib.
Source Scopus