Theory and simulation of anisotropic pair correlations in ferrofluids in magnetic fields / Elfimova E.A., Ivanov A.O., Camp P.J. // Journal of Chemical Physics. - 2012. - V. 136, l. 19.

ISSN:
00219606
Type:
Article
Abstract:
Anisotropic pair correlations in ferrofluids exposed to magnetic fields are studied using a combination of statistical-mechanical theory and computer simulations. A simple dipolar hard-sphere model of the magnetic colloidal particles is studied in detail. A virial-expansion theory is constructed for the pair distribution function (PDF) which depends not only on the length of the pair separation vector, but also on its orientation with respect to the field. A detailed comparison is made between the theoretical predictions and accurate simulation data, and it is found that the theory works well for realistic values of the dipolar coupling constant (λ 1), volume fraction ( 0.1), and magnetic field strength. The structure factor is computed for wavevectors either parallel or perpendicular to the field. The comparison between theory and simulation is generally very good with realistic ferrofluid parameters. For both the PDF and the structure factor, there are some deviations between theory and simulation at uncommonly high dipolar coupling constants, and with very strong magnetic fields. In particular, the theory is less successful at predicting the behavior of the structure factors at very low wavevectors, and perpendicular Gaussian density fluctuations arising from strongly correlated pairs of magnetic particles. Overall, though, the theory provides reliable predictions for the nature and degree of pair correlations in ferrofluids in magnetic fields, and hence should be of use in the design of functional magnetic materials. © 2012 American Institute of Physics.
Author keywords:
Index keywords:
Colloidal particle; Correlated pairs; Dipolar couplings; Ferrofluid; Gaussian density; Hard-sphere models; Magnetic field strengths; Magnetic particle; Pair correlations; Pair distribution functions;
DOI:
10.1063/1.4717718
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861714110&doi=10.1063%2f1.4717718&partnerID=40&md5=9106458f983d901ee70f333ec18faafa
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 194502
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861714110&doi=10.1063%2f1.4717718&partnerID=40&md5=9106458f983d901ee70f333ec18faafa
Affiliations Institute of Mathematics and Computer Sciences, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russian Federation; School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
References Rosensweig, R.E., (1998) Ferrohydrodynamics, , (Dover, New York); Pop, L.M., Odenbach, S., Investigation of the microscopic reason for the magnetoviscous effect in ferrofluids studied by small angle neutron scattering (2006) J. Phys.: Condens. Matter, 18, p. 2785. , 10.1088/0953-8984/18/38/S17; Socoliuc, V., Popescu, L.B., The influence of long range interparticle correlations on the magnetically induced optical anisotropy in magnetic colloids (2011) Physica A, 390, p. 569. , 10.1016/j.physa.2010.10.044; Socoliuc, V., Popescu, L.B., Extinction of polarized light in ferrofluids with different magnetic particle concentrations (2012) J. Magn. Magn. Mater., 324, p. 113. , 10.1016/j.jmmm.2011.07.028; Zrínyi, M., Barsi, L., Büki, A., Deformation of ferrogels induced by nonuniform magnetic fields (1996) J. Chem. Phys., 104, p. 8750. , 10.1063/1.471564; Zrínyi, M., Barsi, L., Szabó, D., Kilian, H.-G., Direct observation of abrupt shape transition in ferrogels induced by nonuniform magnetic field (1997) J. Chem. Phys., 106, p. 5685. , 10.1063/1.473589; Zrínyi, M., Intelligent polymer gels controlled by magnetic fields (2000) Colloid Polym. Sci., 278, p. 98. , 10.1007/s003960050017; Wood, D.S., Camp, P.J., Modeling the properties of ferrogels in uniform magnetic fields (2011) Phys. Rev. e, 83, p. 011402. , 10.1103/PhysRevE.83.011402; Camp, P.J., The effects of magnetic fields on the properties of ferrofluids and ferrogels (2011) Magnetohydrodynamics, 47, p. 123. , http://mhd.sal.lv/contents/2011/2/MG.47.2.2.R.html; Zubarev, A.Yu., On the theory of magnetic deformation in ferrogels (2012) Soft Matter, 8, p. 3174. , 10.1039/c2sm06961j; Cebula, D.J., Charles, S.W., Popplewell, J., The structure of magnetic particles studied by small angle neutron scattering (1981) Colloid. Polym. Sci., 259, p. 395. , 10.1007/BF01524721; Gazeau, F., Dubois, E., Bacri, J.-C., Boué, F., Cebers, A., Perzynski, R., Anisotropy of the structure factor of magnetic fluids under a field probed by small-angle neutron scattering (2002) Phys. Rev. e, 65, p. 031403. , 10.1103/PhysRevE.65.031403; Mériguet, G., Cousin, F., Dubois, E., Boué, F., Cebers, A., Farago, B., Perzynski, R., What tunes the structural anisotropy of magnetic fluids under a magnetic field? (2006) J. Phys. Chem. B, 110, p. 4378. , 10.1021/jp0558573; Wagner, J., Fischer, B., Autenrieth, T., Field induced anisotropy of charged magnetic colloids: A rescaled mean spherical approximation study (2006) J. Chem. Phys., 124, p. 114901. , 10.1063/1.2176678; Wiedenmann, A., Keiderling, U., Meissner, M., Wallacher, D., Gähler, R., May, R.P., Preévost, S., Kohlbrecher, J., Low-temperature dynamics of magnetic colloids studied by time-resolved small-angle neutron scattering (2008) Phys. Rev. B, 77, p. 184417. , 10.1103/PhysRevB.77.184417; Jordan, P.C., Association phenomena in a ferromagnetic colloid (1973) Mol. Phys., 25, p. 961. , 10.1080/00268977300100821; Hayter, J.B., Pynn, R., Structure factor of a magnetically saturated ferrofluid (1982) Phys. Rev. Lett., 49, p. 1103. , 10.1103/PhysRevLett.49.1103; Popescu, L.B., Socoliuc, V., Perturbational statistical theories of magnetic fluids (2005) J. Optoelectron. Adv. Mater., 7, p. 3075. , http://joam.inoe.ro/arhiva/pdf7_6/Popescu.pdf; Elfimova, E.A., Ivanov, A.O., Pair correlations in magnetic nanodispersed fluids (2010) J. Exp. Theor. Phys., 111, p. 146. , 10.1134/S1063776110070149; Cerdà, J.J., Elfimova, E., Ballenegger, V., Krutikova, E., Ivanov, A., Holm, C., Behavior of bulky ferrofluids in the diluted low-coupling regime: Theory and simulation (2010) Phys. Rev. e, 81, p. 011501. , 10.1103/PhysRevE.81.011501; Hess, S., Hayter, J.B., Pynn, R., A comparison of molecular dynamics and analytic calculation of correlations in an aligned ferrofluid (1984) Mol. Phys., 53, p. 1527. , 10.1080/00268978400103151; Mériguet, G., Jardat, M., Turq, P., Structural properties of charge-stabilized ferrofluids under a magnetic field: A brownian dynamics study (2004) J. Chem. Phys., 121, p. 6078. , 10.1063/1.1784434; Huang, J.P., Wang, Z.W., Holm, C., Computer simulations of the structure of colloidal ferrofluids (2005) Phys. Rev. e, 71, p. 061203. , 10.1103/PhysRevE.71.061203; De Gennes, P.G., Pincus, P.A., Pair correlations in a ferromagnetic colloid (1970) Phys. Kondens. Mater., 11, p. 189. , 10.1007/BF02422637; Tavares, J.M., Telo Da Gama, M.M., Osipov, M.A., Criticality of dipolar fluids: Liquid-vapour condensation versus phase separation in systems of living polymers (1997) Phys. Rev. e, 56, p. 6252. , 10.1103/PhysRevE.56.R6252; Tavares, J.M., Weis, J.J., Telo Da Gama, M.M., Strongly dipolar fluids at low densities compared to living polymers (1999) Phys. Rev. e, 59, p. 4388. , 10.1103/PhysRevE.59.4388; Ivanov, A.O., Kantorovich, S.S., Pyanzina, E.S., Scaling behaviour of the structure factor of chain-forming ferrofluids at low wave vectors (2008) Magnetohydrodynamics, 44, p. 33. , http://mhd.sal.lv/contents/2008/1/MG.44.1.5.R.html; Pyanzina, E., Kantorovich, S., Cerdà, J.J., Ivanov, A.O., Holm, C., How to analyse the structure factor in ferrofluids with strong magnetic interactions: A combined analytic and simulation approach (2009) Mol. Phys., 107, p. 571. , 10.1080/00268970902893149; Klokkenburg, M., Dullens, R.P.A., Kegel, W.K., Erné, B.H., Philipse, A.P., Quantitative real-space analysis of self-assembled structures of magnetic dipolar colloids (2006) Phys. Rev. Lett., 96, p. 037203. , 10.1103/PhysRevLett.96.037203; Camp, P.J., Patey, G.N., Structure and scattering in colloidal ferrofluids (2000) Phys. Rev. e, 62, p. 5403. , 10.1103/PhysRevE.62.5403; Tlusty, T., Safran, S.A., Defect-induced phase separation in dipolar fluids (2000) Science, 290, p. 1328. , 10.1126/science.290.5495.1328; Ganzenmüller, G., Patey, G.N., Camp, P.J., Vapour-liquid phase transition of dipolar particles (2009) Mol. Phys., 107, p. 403. , 10.1080/00268970902821587; Rovigatti, L., Russo, J., Sciortino, F., No evidence of gas-liquid coexistence in dipolar hard spheres (2011) Phys. Rev. Lett., 107, p. 237801. , 10.1103/PhysRevLett.107.237801; Rovigatti, L., Russo, J., Sciortino, F., Structural Properties of the Dipolar Hard-sphere Fluid at Low Temperatures and Densities, , Soft Matter (in press); Elfimova, E., Ivanov, A., The radial distribution function and the structure factor of dipolar hard spheres (2008) Magnetohydrodynamics, 44, p. 39. , http://mhd.sal.lv/contents/2008/1/MG.44.1.6.R.html; Hansen, J.-P., McDonald, I.R., (2006) Theory of Simple Liquids, , 3rd ed. (Academic, London); Ivanov, A.O., Kantorovich, S.S., Reznikov, E.N., Holm, C., Pshenichnikov, A.F., Lebedev, A.V., Chremos, A., Camp, P.J., Magnetic properties of polydisperse ferrofluids: A critical comparison between experiment, theory, and computer simulation (2007) Phys. Rev. e, 75, p. 061405. , 10.1103/PhysRevE.75.061405; Ivanov, A.O., Kantorovich, S.S., Reznikov, E.N., Holm, C., Pshenichnikov, A.F., Lebedev, A.V., Chremos, A., Camp, P.J., Magnetic measurements as a key for the particle size distribution in ferrofluids: Experiment, theory, and computer simulations (2007) Magnetohydrodynamics, 43, p. 393. , http://mhd.sal.lv/contents/2007/4/MG.43.4.2.R.html; Mayer, J.E., Montroll, E., Molecular distribution (1941) J. Chem. Phys., 9, p. 2. , 10.1063/1.1750822; De Boer, J., Molecular distribution and equation of state of gases (1949) Rep. Prog. Phys., 12, p. 305. , 10.1088/0034-4885/12/1/314; Buyevich, Yu.A., Ivanov, A.O., Equilibrium properties of ferrocolloids (1992) Physica A, 190, p. 276. , 10.1016/0378-4371(92)90037-Q; Allen, M.P., Tildesley, D.J., (1987) Computer Simulation of Liquids, , (Clarendon, Oxford); Joslin, C.G., The third dielectric and pressure virial coefficients of dipolar hard sphere fluids (1981) Mol. Phys., 42, p. 1507. , 10.1080/00268978100101111; Joslin, C., Goldman, S., The third dielectric and pressure virial coefficients of dipolar hard sphere fluids ii. numerical results (1993) Mol. Phys., 79, p. 499. , 10.1080/00268979300101401; Henderson, D., Second virial coefficient for the dipolar hard sphere fluid (2011) J. Chem. Phys., 135, p. 044514. , 10.1063/1.3615723
Correspondence Address Camp, P.J.; School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; email: philip.camp@ed.ac.uk
CODEN JCPSA
Language of Original Document English
Abbreviated Source Title J Chem Phys
Source Scopus