Oxygen nonstoichiometry, defect structure and electrical properties of LaFe0.7Ni0.3O3-δ / Kiselev E.A., Cherepanov V.A. // Solid State Ionics. - 2011. - V. 191, l. 1. - P. 32-39.

ISSN:
01672738
Type:
Article
Abstract:
Oxygen nonstoichiometry (δ), total conductivity (σ) and thermoelectric power (S) of the LaFe0.7Ni0.3O 3 - δ sample have been studied as functions of temperature and oxygen partial pressure. Based on the results of the direct reduction of the sample in hydrogen flow at 1100 °C the absolute oxygen content (3 - δ) has been found to vary from 2.999 to 2.974 in the range of 1273-1373 K and 10- 3-0.21 atm. The point defect equilibrium models have been proposed and fitted to the set of experimental data in the form of log p(O 2) = f(δ)T dependences. The values of standard thermodynamic quantities of defect formation reactions have been assessed. The joint analysis of oxygen nonstoichiometry, total conductivity and thermoelectric power has been performed using a small-polaron approach. The values of partial conductivity, partial thermopower and mobilities of electronic charge carriers have been calculated. The p-type semiconducting behavior of LaFe 0.7Ni0.3O3 - δ has been explained by the higher mobility values of electron holes than those of electrons in the whole range of thermodynamic parameters studied. © 2011 Elsevier B.V.
Author keywords:
Conductivity; Electron mobility; Hole mobility; LaFe0.7Ni0.3O3 - δ; Oxygen nonstoichiometry; Thermoelectric power
Index keywords:
Conductivity; Defect formation; Direct Reduction; Electrical property; Electron hole; Electronic charges; Experimental data; Hydrogen flow; Joint analysis; Mobility value; Oxygen content; Oxygen nonst
DOI:
10.1016/j.ssi.2011.03.023
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79956116115&doi=10.1016%2fj.ssi.2011.03.023&partnerID=40&md5=0bf53fc2d62dd9a2427fa632c51ebe40
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-79956116115&doi=10.1016%2fj.ssi.2011.03.023&partnerID=40&md5=0bf53fc2d62dd9a2427fa632c51ebe40
Affiliations Department of Chemistry, Ural State University, Lenin Av. 51, 620000 Ekaterinburg, Russian Federation
Author Keywords Conductivity; Electron mobility; Hole mobility; LaFe0.7Ni0.3O3 - δ; Oxygen nonstoichiometry; Thermoelectric power
References Chiba, R., Yoshimura, F., Sakurai, Y., (1999) Solid State Ionics, 124, pp. 281-288; Basu, R.N., Tietz, F., Teller, O., Wessel, E., Buchkremer, H.P., Stover, D., Solid State, J., (2003) Electrochem., 7, pp. 416-420; Chiba, R., Tabata, Y., Komatsu, T., Orui, H., Nozawa, K., Arakawa, M., Arai, H., (2008) Solid State Ionics, 78, pp. 1701-1709; Komatsu, T., Chiba, R., Arai, H., Sato, K., Power, J., (2008) Sources, 176, pp. 132-137; Mat, M.D., Liub, X., Zhuc, Z., Zhu, B., (2007) Int. J. Hydrogen Energy, 32, pp. 796-801; Li, S., Sun, X., Wen, Z., Sun, J., (2006) Rare Met., 25, pp. 213-217; Basu, R.N., Tietz, F., Wessel, E., Stöver, D., (2004) J. Mater. Proc. Tech., 147, pp. 85-89; Świerczek, K., Marzec, J., Pałubiak, D., Zaja̧c, W., Molenda, J., (2006) Solid State Ionics, 177, pp. 1811-1817; Zaja̧c, W., Swierczek, K., Molenda, J., (2007) J. Power. Sources, 173, pp. 675-680; Bevilacqua, M., Montini, T., Tavagnacco, C., Fonda, E., Fornasiero, P., Graziani, M., (2007) Chem. Mater., 19, pp. 5926-5936; Iwasaki, K., Ito, T., Yoshino, M., Matsui, T., Nagasaki, T., Arita, Yu., (2007) J. Alloys. Compd., 430, pp. 297-301; Rapagn, S., Provendier, H., Petit, C., Kiennemann, A., Foscolo, P.U., (2002) Biomass Bioenergy, 22, pp. 377-388; Pecchi, G., Reyes, P., Zamora, R., Cadus, L.E., Fierro, J.L.G., (2008) J. Solid State. Chem., 181, pp. 905-912; Funahashi, R., Mikami, M., Urata, S., Kitawaki, M., Kouuchi, T., Mizuno, K., (2005) Meas. Sci. Technol., 16, pp. 70-80; Falcon, H., Goeta, A.E., Punte, G., Carbonio, R.E., (1997) J. Solid State Chem., 133, pp. 379-385; Kharton, V.V., Viskup, A.P., Naumovich, E.N., Tikhonovich, V.N., (1999) Mater. Res. Bull., 34, pp. 1311-1317; Kiselev, E.A., Proskurnina, N.V., Voronin, V.I., Cherepanov, V.A., (2007) Inorg. Mater., 43, pp. 167-175; Gateshki, M., Suescun, L., Kolesnik, S., Mais, J., Swierczek, K., Short, S., Dabrowski, B., (2008) J. Solid State. Chem., 181, pp. 1833-1839; Nakamura, T., Petzow, G., Gauckler, L.J., (1979) Mater. Res. Bull., 14, pp. 649-659; Mizusaki, J., Yoshihiro, M., Yamauchi, S., Fueki, K., (1985) J. Solid State. Chem., 58, pp. 257-266; Mizusaki, J., Sasamoto, T., Cannon, W.R., Bowen, H.K., (1982) J. Amer. Ceram. Soc., 65, pp. 363-368; Iwasaki, K., Ito, T., Yoshino, M., Matsui, T., Nagasaki, T., Arita, Yu., (2007) J. Alloys. Compd., 430, pp. 297-301; Berenov, A., Angeles, E., Rossini, J., Raj, E., Kilner, J., Atkinson, A., (2008) Solid State Ionics, 179, pp. 1090-1093; Park, I.-H., Lee, H.-P., (1988) Bull. Korean Chem. Soc., 9, pp. 283-288; Wachovsky, T., Ziolinski, S., Burewicz, A., (1981) Acta Chim. Acad. Sci., 106, pp. 217-225; Bannikov, D.O., Cherepanov, V.A., (2006) J. Solid State. Chem., 179, pp. 2721-2727; Tiwari, A., Rajeev, K.P., (1999) J. Phys. Condens. Matter., 11, pp. 3291-3298; Parkash, O., (1978) Proc. Indian Acad. Sci., 18, pp. 331-335; Obayashi, H., Kudo, T., (1975) Jap. J. Appl. Phys., 14, pp. 330-335; Rajeev, K.P., Shivshankar, G.V., Raychaudhuri, A.K., (1991) Solid State Commun., 79, p. 1112; Rajeev, K.P., Raychaudhuri, A.K., (1992) Phys. Rev. B, 46, pp. 1309-1320; Rodriguez-Carvajal, J., (1993) Physica B, 192, pp. 55-69; Petrov, A.N., Cherepanov, V.A., Kononchuk, O.F., Ya, L., (1990) Gavrilova. J. Solid State Chem., 87, pp. 69-76; Kiselev, E.A., Proskurnina, N.V., Cherepanov, V.A., (2007) Rus. J. Phys. Chem. A., 81, pp. 1950-1955; Petrov, A.N., Cherepanov, V.A., Zuev, A.Yu., (1987) Zh. Fiz. Khim., 61, pp. 630-687; Reznitskiy, L.A., (2002) Zh. Fiz. Khim., 76, p. 572; Wærnhus, I., Grande, T., Wiik, K., (2005) Solid State Ionics, 176, pp. 2609-2616; Petrov, A.N., Cherepanov, V.A., Zuev, A.Yu., (2006) J Solid State Electrochem., 10, pp. 517-537; Lankhorst, M.H.R., Bouwmeester, H.J.M., Verweij, H., (1996) Phys. Rev. Lett., 77, pp. 2989-2992; Heikes, R.R., (1961) Thermoelectricity: Science and Engineering, p. 351; Doumerc, J.P., (1994) J. Solid State. Chem., 110, pp. 419-420; Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J., Fueki, K., (1988) J. Solid State. Chem., 73, pp. 179-187; Søgaard, M., Hendriksen, P.V., Mogensen, M., (2007) J. Solid State. Chem., 180, pp. 1489-1503; Tsipis, E.V., Kiselev, E.A., Kolotygin, V.A., Waerenborgh, J.C., Cherepanov, V.A., Kharton, V.V., (2008) Solid State Ionics, 179, pp. 2170-2180; Tsvetkov, D.S., Zuev, A.Yu., Vylkov, A.I., Petrov, A.N., (2007) Solid State Ionics, 178, pp. 1458-1462; Shannon, R.D., (1976) Acta Crystallogr. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 32, pp. 751-767; Goodenough, J.B., Zhou, J.-S., (1998) Chem. Mater., 10, pp. 2980-2988; Alonso, J.A., Martinez-Lope, M.J., Garsia-Munoz, J.L., Fernandez-Diaz, M.T., Phys, J., (1997) Condens. Matter., 9, pp. 6417-6426; Devresse, J.T., (1996) Polarons, Encyclopedia of Applied Physics, 14, pp. 383-409. , Wiley-VCH Publishers; Blatt, F.J., (1968) Physics of Electronic Conduction in Solids, , McGrow Hill
Correspondence Address Kiselev, E. A.; Department of Chemistry, Ural State University, Lenin Av. 51, 620000 Ekaterinburg, Russian Federation; email: Eugene.Kiselyov@usu.ru
CODEN SSIOD
Language of Original Document English
Abbreviated Source Title Solid State Ionics
Source Scopus