P(O2)-stability of LaFe1-xNixO 3-δ solid solutions at 1100 °c / Kiselev E.A., Cherepanov V.A. // Journal of Solid State Chemistry. - 2010. - V. 183, l. 9. - P. 1992-1997.

ISSN:
00224596
Type:
Article
Abstract:
LaFe1-xNixO3-δ (x=0.1-1.0) perovskites were synthesized via citrate route. The p(O2)-stability of the perovskite phases LaFe1-xNixO3-δ has been evaluated at 1100 °C based on the results of XRD analysis of powder samples annealed at various p(O2) and quenched to room temperature. The isothermal LaFeO3-δ"LaNiO3-δ" cross-section of the phase diagram of the LaFeNiO system has been proposed in the range of oxygen partial pressure -15<log p(O2)/atm≤0.68. The unit cell parameters of orthorhombic perovskites O-LaFe1-xNi xO3-δ increase with decrease in p(O2) at fixed composition x. This behavior is explained on the basis of size factor. The decomposition temperatures of rhombohedral phases R-LaFe1-xNi xO3-δ for x=0.7, 0.8, 0.9 and 1.0 in air were determined as 1137, 1086, 1060 and 995 °C, respectively. © 2010 Elsevier Inc. All rights reserved.
Author keywords:
LaFe1-xNixO3-δ; Perovskite; Phase diagram; Thermodynamic stability
Index keywords:
Citrate route; Decomposition temperature; Orthorhombic perovskite; Oxygen partial pressure; Perovskite phasis; Powder samples; Rhombohedral phasis; Room temperature; Unit cell parameters; XRD analysis
DOI:
10.1016/j.jssc.2010.06.013
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649737339&doi=10.1016%2fj.jssc.2010.06.013&partnerID=40&md5=a450c469b58dec8a084c31f0cab44a43
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649737339&doi=10.1016%2fj.jssc.2010.06.013&partnerID=40&md5=a450c469b58dec8a084c31f0cab44a43
Affiliations Department of Chemistry, Ural State University, Lenin Ave. 51, 620083 Ekaterinburg, Russian Federation
Author Keywords LaFe1-xNixO3-δ; Perovskite; Phase diagram; Thermodynamic stability
References Chiba, R., Yoshimura, F., Sakurai, Y., (1999) Solid State Ionics, 124, pp. 281-288; Basu, R.N., Tietz, F., Teller, O., Wessel, E., Buchkremer, H.P., Stover, D., (2003) J. Solid State Electrochem., 7, pp. 416-420; Lima, S.M., Assaf, J.M., (2002) Mater. Res., 5, pp. 329-335; Chiba, R., Tabata, Y., Komatsu, T., Orui, H., Nozawa, K., Arakawa, M., Arai, H., (2008) Solid State Ionics, 78, pp. 1701-1709; Komatsu, T., Chiba, R., Arai, H., Sato, K., (2008) J. Power Sources, 176, pp. 132-137; Mat, M.D., Liub, X., Zhuc, Z., Zhu, B., (2007) Int. J. Hydrogen Energy, 32, pp. 796-801; Li, S., Sun, X., Wen, Z., Sun, J., (2006) Rare Met., 25, pp. 213-217; Basu, R.N., Tietz, F., Wessel, E., Stver, D., Mat, J., (2004) Proc. Tech., 147, pp. 85-89; Świerczek, K., Marzec, J., Paubiak, D., Zajc, W., Molenda, J., (2006) Solid State Ionics, 177, pp. 1811-1817; Zajc, W., Swierczek, K., Molenda, J., (2007) J. Power Sources, 173, pp. 675-680; Bevilacqua, M., Montini, T., Tavagnacco, C., Fonda, E., Fornasiero, P., Graziani, M., (2007) Chem. Mater., 19, pp. 5926-5936; Iwasaki, K., Ito, T., Yoshino, M., Matsui, T., Nagasaki, T., Arita, Yu., (2007) J. Alloys Compd., 430, pp. 297-301; Funahashi, R., Mikami, M., Urata, S., Kitawaki, M., Kouuchi, T., Mizuno, K., (2005) Meas. Sci. Technol., 16, pp. 70-80; Falcon, H., Goeta, A.E., Punte, G., Carbonio, R.E., (1997) J. Solid State Chem., 133, pp. 379-385; Kharton, V.V., Viskup, A.P., Naumovich, E.N., Tikhonovich, V.N., (1999) Mater. Res. Bull., 34, pp. 1311-1317; Proskurnina, N.V., Voronin, V.I., Cherepanov, V.A., Kiselev, E.A., (2007) Prog. Solid State Chem., 35, pp. 233-239; Gateshki, M., Suescun, L., Kolesnik, S., Mais, J., Swierczek, K., Short, S., Dabrowski, B., (2008) J. Solid State Chem., 181, pp. 1833-1839; Moruzzi, V.L., Shafer, M.W., (1960) J. Am. Ceram. Soc., 43, pp. 367-372; Nakamura, T., Petzow, G., Gauckler, L.J., (1979) Mater. Res. Bull., 14, pp. 649-659; Bannikov, D.O., Cherepanov, V.A., (2006) J. Solid State Chem., 179, pp. 2721-2727; Kiselev, E.A., Proskurnina, N.V., Voronin, V.I., Cherepanov, V.A., (2007) Inorg. Mater., 43, p. 167; Rodriguez-Carvajal, J., (1993) Physica B, 192, pp. 55-69; Zinkevich, M., Aldinger, F., (2004) J. Alloys Compd., 375, pp. 147-161; Petrov, A.N., Cherepanov, V.A., Zuev, A.Y.U., Zhukovsky, V.M., (1988) J. Solid State Chem., 77, pp. 1-14; Kimizuka, N., Yamamoto, A., Ohashi, H., Sugihara, T., Sekine, T., (1983) J. Solid State Chem., 49, pp. 65-76; Schneider, F., Schmalzried, H., (1990) Z. Phys. Chem. NF, 166, p. 1; Shannon, R.D., (1976) Acta Crystallogr. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 32, pp. 751-767; Armstrong, T.R., Stevenson, J.W., Pederson, L.R., Raney, P.E., (1996) J. Electrochem. Soc., 143, pp. 2919-2925; Larsen, P.H., Hendriksen, P.V., Mogensen, M., (1997) J. Therm. Anal., 49, pp. 1263-1275; Zuev, A., Singheiser, L., Hilpert, K., (2002) Solid State Ionics, 147, pp. 1-11; Hilpert, K., Steinbrech, R.W., Boroomand, F., Wessel, E., Meschke, F., Zuev, A., Teller, O., Singheiser, L., (2003) J. Eur. Ceram. Soc., 23, pp. 3009-3020; Zuev, A.Y.U., Vylkov, A.I., Petrov, A.N., Tsvetkov, D.S., (2008) Solid State Ionics, 179, pp. 1876-1879
Correspondence Address Kiselev, E. A.; Department of Chemistry, Ural State University, Lenin Ave. 51, 620083 Ekaterinburg, Russian Federation; email: Eugene.Kiselyov@usu.ru
CODEN JSSCB
Language of Original Document English
Abbreviated Source Title J. Solid State Chem.
Source Scopus