Analytical model of ion transport and conversion of light energy in chloroplasts / Melkikh A.V., Seleznev V.D., Chesnokova O.I. // Journal of Theoretical Biology. - 2010. - V. 264, l. 3. - P. 702-710.

ISSN:
00225193
Type:
Article
Abstract:
An analytical model, which describes the stationary transformation of light energy to the energy of pigment electronic excitation, has been constructed. A proton pump of the thylakoid membrane has been considered as a two-level conformon. The difference between the energies of the excited and ground states of both the pigment and the protein complex is assumed to be the energy of an absorbed photon. It has been found how the concentration of ions in a lumen and the potential across the thylakoid membrane depend on the concentration of ions in the stroma and the brightness temperature of absorbed radiation. Conditions for the maximum efficiency of the photosynthesis process have been analyzed. This model has been used to determine the electric potential (φ6.7. mV) at the chloroplast thylakoid membrane. The calculated value of the electric potential is in good agreement with the experimental data. A limitation on the stoichiometric coefficient of the proton transport through ATP-synthase, m>3, has been found theoretically. © 2010 Elsevier Ltd.
Author keywords:
Active transport of ions; Energy conversion; Photosynthesis; Resting potential
Index keywords:
proton pump; analytical method; chloroplast; concentration (composition); ion; photosynthesis; pigment; protein; stoichiometry; article; brightness; chloroplast; electric potential; electron transport
DOI:
10.1016/j.jtbi.2010.04.002
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952738891&doi=10.1016%2fj.jtbi.2010.04.002&partnerID=40&md5=33517e7e60821172a651ac6bc17e50bb
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952738891&doi=10.1016%2fj.jtbi.2010.04.002&partnerID=40&md5=33517e7e60821172a651ac6bc17e50bb
Affiliations Ural State Technical University, 19 Mira St., 620002 Ekaterinburg, Russian Federation
Author Keywords Active transport of ions; Energy conversion; Photosynthesis; Resting potential
Chemicals/CAS Adenosine Triphosphate, 56-65-5; Photosystem I Protein Complex; Photosystem II Protein Complex; Plant Proteins
References Albarrán-Zavala, E., Angulo-Brown, F., A simple thermodynamic analysis of photosynthesis (2007) Entropy, 9, pp. 152-168; Bulychev, A.A., Vredenberg, W.J., Light-triggered electrical events in the thylakoid membrane of plant chloroplast (1999) Physiol. Plant., 105, pp. 577-584; Creighton, T.E., (1999) Encyclopedia of Molecular Biology, , John Wiley & Sons, Inc., USA, New York; Fleischman, D., Photosynthesis (2001) Cell Phisiology Sourcebook. A Molecular Approach, pp. 1097-1113. , Academic Press, USA, San Diego, N. Sperelakis (Ed.); Gennis, R.B., (1989) Biomembranes. Molecular Structure and Function, , Springer-Verlag, New York; Green, N.P.O., Stout, G.W., Taylor, D.J., (1997) Biological Science, , Cambridge University Press; Hall, D.O., Rao, K.K., (1981) Photosynthesis, , Edward Arnold & Co, UK, London; Heer, C.V., (1972) Statistical Mechanics, Kinetic Theory, and Stochastic Processes, , Academic Press, USA, New York; Hodgkin, A.L., Katz, B., The effect on sodium ions in electrical activity of the giant axon of the squid (1949) J. Physiol. London, 108, pp. 37-77; Jennings, R.C., Engelmann, E., Garlaschi, F., Casazza, A.P., Zucchelli, G., Photosynthesis and negative entropy production (2005) Biochim. Biophys. Acta, 1709, pp. 251-255; Jennings, R.C., Casazza, A.P., Belgio, E., Garlaschi, F., Zucchelli, G., Reply to "Commentary on Photosynthesis and Negative Entropy Production by Jennings and coworkers" by J. Lavergne (2006) Biochim. Biophys. Acta, 1757, pp. 1460-1462; Knox, R.S., Parson, W.W., Entropy production and the second law in photosynthesis (2007) Biochim. Biophys. Acta, 1767, pp. 1189-1193; Lavergne, J., Commentary on "photosynthesis and negative entropy production" by Jennings and coworkers (2006) Biochim. Biophys. Acta Bioenerg., 1757, pp. 1460-1462; Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 324 (3), pp. 403-412; Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in cardiac cell (2008) J. Theor. Biol., 252, pp. 247-254; Melkikh, A.V., Seleznev, V.D., Requirements on models and models of active transport of ions in biomembranes (2006) Bull. Math. Biol., 68, pp. 385-399; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in biomembranes based on ATP-dependent change of height of diffusion barriers to ions (2006) J. Theor. Biol., 242 (3), pp. 617-626; Melkikh, A.V., Seleznev, V.D., Models of active transport of neurotransmitters in synaptic vesicles (2007) J. Theor. Biol., 248 (2), pp. 350-353; Melkikh, A.V., Seleznev, V.D., Nonequilibrium statistical model of active transport of ions and ATP production in mitochondria (2007) J. Biol. Phys., 33 (2), pp. 161-170; Meszena, G., Westerhoff, H.V., Non-equilibrium thermodynamics of light absorption (1999) J. Phys. A: Math. Gen., 32, pp. 301-311; Nicholls, D.G., (1982) Bioenergetics. An Introduction to the Chemiosmotic Theory, , Academic Press, UK, London; Oster, G., Wang, H., Rotary protein motors (2003) Trends Cell Biol., 13 (3), pp. 114-121; Oster, G., Wang, H., Why is the efficiency of the F1 ATPase so high? (2000) J. Bioenerg. Biomembr., 32, pp. 459-469; Parson, W.W., Thermodynamics of the primary reactions of photosynthesis (1978) Photochem. Photobiol., 28, pp. 389-393; Riznichenko, G., Lebedeva, G., Demin, O., Rubin, A., Kinetic mechanisms of biological regulation in photosynthetic organisms (1999) J. Biol. Phys., 25, pp. 177-192; Ross, R.T., Calvin, M., Thermodynamics of light emission and free-energy storage in photosynthesis (1967) Biophys. J., 7, pp. 595-614; Rubin, A.B., (1987) Biophysics, , Visshaja shkola, Russia, Moscow, (in Russian); Sen, K.K., Necessary conditions for steady state in radiation: matter interaction and the role of entropy (1972) J. Quant. Spectrosc. Radiat. Transfer., 12, pp. 1487-1496; Vershubskii, A.V., Priklonskii, V.I., Tikhonov, A.N., Mathematical modeling of electron and proton transport coupled with ATP synthesis in chloroplasts (2004) Biofizika, 49 (1), pp. 52-65; Volkenstein, M.V., (1983) General Biophysics, , Academic Press, New York; Zhu, X.-G., de Sturler, E., Long, S.P., Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm (2007) Plant Physiol., 145, pp. 513-526
Correspondence Address Melkikh, A.V.; Ural State Technical University, 19 Mira St., 620002 Ekaterinburg, Russian Federation; email: melkikh2008@rambler.ru
CODEN JTBIA
PubMed ID 20380840
Language of Original Document English
Abbreviated Source Title J. Theor. Biol.
Source Scopus