The effect of the radiation pressure on the orbital evolution of geosynchronous objects / Kuznetsov E.D. // Solar System Research. - 2011. - V. 45, l. 5. - P. 433-446.

ISSN:
00380946
Type:
Article
Abstract:
The effect of the radiation pressure and Poynting-Robertson effect on the evolution of the orbits of geosynchronous satellites is studied, depending on their area to mass ratio. The qualitative changes of the orbital evolution caused by these disturbances are considered. The reflection coefficient of the satellite's surface was assumed to be 1.44. In the vicinity of the stable point with the longitude of 75° the exit from the libration resonance mode was registered when the area to mass ratio value changed from 5.9 to 6.0 m2/kg; in the vicinity of the unstable point at 345° with the area to mass ratio of 1.4 it occurred at 1.5 m2/kg. Re-entry to Earth occurs at values of the area to mass ratio above 32.2 m2/kg, and hyperbolic exit from the low-Earth orbit occurs at values of the area to mass ratio over 5267 m2/kg. At high values of the area to mass ratio, slopes of initially equatorial orbits can reach 49°. It is shown that due to the Poynting-Robertson effect the secular decrease in the semimajor axis of orbit in libration resonance region is 3-4 orders of magnitude less than outside of it. © 2011 Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
нет данных
DOI:
10.1134/S0038094611050078
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052823337&doi=10.1134%2fS0038094611050078&partnerID=40&md5=c427c2ab1810d7454d41ae7b3bb22108
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052823337&doi=10.1134%2fS0038094611050078&partnerID=40&md5=c427c2ab1810d7454d41ae7b3bb22108
Affiliations Ural State University, Ekaterinburg, Russian Federation
References Agapov, V., Molotov, I., Khutorovsky, Z., Titenko, V., Classification and Characterization of GEO Population Based on Results of the ISON Observations 5th European Conf. on Space Debris, , http://lfvn.astronomer.ru/report/0000048/011/index.htm, Darmstadt, March 30-April 2 2009, Available from; Anselmo, L., Pardini, C., Orbital Evolution of Geosynchronous Objects with High Area-to-Mass Ratios (2005) Proc. of the 4th European Conf. on Space Debris, pp. 279-284. , Noordwijk; Anselmo, L., Pardini, C., Space Debris Mitigation in Geosynchronous Orbit (2008) Adv. Space Res., 41, pp. 1091-1099; Anselmo, L., Pardini, C., Dynamical Evolution of High Area-to-Mass Ratio Debris Released into GPS Orbits (2009) Adv. Space Res., 43, pp. 1491-1508; Bordovitsyna, T.V., (1984) Sovremennye Chislennye Metody V Zadachakh Nebesnoi Mekhaniki, , (Modern Numerical Methods in Celestial Mechanics Problems), Moscow: Nauka; Bordovitsyna, T.V., Baturin, A.P., Avdyushev, V.A., Kulikova, P.V., Numerical Model of Artificial Earth Satellite Motion. New Version (2007) Izv. Vyssh. Uchebn. Zaved. Fiz., 50 (2-12), pp. 60-65; Butler, G., (2005) Methods of Celestial Mechanics, , Berlin, Heidelberg: Springer-Verlag; Chao, C.C., Analytical Investigation of GEO Debris with High Area-to-Mass Ratio (2006) Proc. 2006 AIAA/AAS Astrodynamics Specialist Conf, , Keystone; (2002), Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines, IADC-02-01, Oct. 15; Kuznetsov, E.D., Kaizer, G.T., Stochastic Motion of Geosynchronous Satellites (2007) Kosm. Issl., 45, pp. 378-386; Kuznetsov, E.D., Kudryavtsev, A.O., Motion Features of Geosynchronous Satellites in the Neighborhood of Nonstable Stationary Points (2008) Kosm. Issl., 46, pp. 452-456; Kuznetsov, E.D., Kudryavtsev, A.O., Accuracy of Long-Term Forecasting Geosynhronous Satellite Motion (2009) Izv. Vyssh. Uchebn. Zaved. Fiz., 52 (8), pp. 65-72; Lemaître, A., Delsate, N., Valk, S., A Web of Secondary Resonances for Large A/m Geostationary Debris (2009) Celest. Mech. Dyn. Astron., 104, pp. 383-402; Lemoine, F.G., Kenyon, S.C., Factor, J.K., (1998) The Development of the Joint NASA GSFC and National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, , NASA/TP-1998-206861, GSFC; Liou, J.-C., Weaver, J.K., Orbital Dynamics of High Area-to-Mass Ratio Debris and Their Distribution in the Geosynchronous Region (2005) Proc. Of the 4th European Conf. On Space Debris, pp. 285-290. , D. Danesy (Ed.), Noordwijk: ESA Publications Division; Musci, R., Schildknecht, T., Flohrer, T., Beutler, G., Evolution of the Orbital Elements for Objects with High Area-to-Mass Ratios in Geostationary Transfer Orbits (2008) Adv. Space Res., 41, pp. 1071-1076; Ragos, O., Zafiropoulos, F.A., A Numerical Study of the Influence of the Poynting-Robertson Effect on the Equilibrium Points of the Photogravitational Restricted Three-Body Problem. I. Coplanar Case (1995) Astron. Astrophys., 300, pp. 568-578; Schildknecht, T., Musci, R., Ploner, M., Optical Observations of Space Debris in GEO and in Highly-Eccentric Orbits (2004) Adv. Space Res., 34, pp. 901-911; Schildknecht, T., Musci, R., Flury, W., Optical Observations of Space Debris in High-Altitude Orbits (2005) Proc. of the 4th European Conf. on Space Debris, pp. 113-118. , Noordwijk; Schildknecht, T., Musci, R., Flohrer, T., Properties of the High Area-to-Mass Ratio Space Debris Population at High Altitudes (2008) Adv. Space Res., 41, pp. 1039-1045; Schildknecht, T., Musci, R., Jehn, R., Kuusela, J., Ten Years of Observations at the ESA Space Debris Telescope-Discoveries, Highlights and Lessons Learned Proc. 5th Europ. Conf. on Space Debris, , http://lfvn.astronomer.ru/report/0000048/004/index.htm, Darmstadt, March 30-April 2 2009, Available from; Slabinski, V.J., Poynting-Robertson Drag on Satellites Near Synchronous Altitude (1980) Bull. Amer. Astron. Soc., 12, p. 741; Slabinski, V.J., Poynting-Robertson Force Allowing for Wavelength-Dependent Reflection Coefficients and Non-Spherical Shapes (1983) Bull. Amer. Astron. Soc., 15, p. 869; Smirnov, M.A., Mikisha, A.M., Secular Evolution of Geostationary Objects Caused by Light Pressure (1993) Problema Zagryazneniya Kosmosa (Kosmicheskii Musor), pp. 126-142. , (The Technogeneous Space Debris Problems), Moscow: Kosmosinform; Smirnov, M.A., Mikisha, A.M., Secular Evolution of Space Bodies on High Orbits due to Light Pressure. Part II. The Way to Determine Parameters, which Characterizes Light Pressure Impact onto Geosynchronous Satellites according to Photometric Observations (1995) Stolknoveniya V Okolozemnom Prostranstve (Kosmicheskii Musor), pp. 252-271. , (Collisions in the Surrounding Space (Space Debris)), Moscow: Kosmosinform; Sokolov, L.L., Kuznetsov, E.D., Nonlinear Evolution of the Orbit Eccentricity of a Spherically Symmetric Balloon Satellite (2006) Kosmich. Issled., 44 (6), pp. 540-547; Tueva, O.N., Avdyushev, V.A., How the Light Pressure and Poynting-Robertson Effect Influence onto Space Debris Dynamic (2006) Sbornik Trudov Konf. Okolozemnaya Astronomiya-2005, pp. 261-267. , (Proc. Conf. Near-Earth Astronomy-2005), Yu. A. Nefed'ev, L. V. Rykhlova, M. A. Smirnov, and E. S. Bakanas (Eds.), Kazan: Kazan. gos.univ. im. V.I. Ul'yanova-Lenina; Valk, S., Lemaître, A., Anselmo, L., Analytical and Semi-Analytical Investigations of Geosynchronous Space Debris with High Area-to-Mass Ratios Influenced by Solar Radiation Pressure (2008) Adv. Space Res., 41, pp. 1077-1090; Valk, S., Lemaître, A., Deleflie, F., Semi-Analytical Theory of Mean Orbital Motion for Geosynchronous Space Debris under Gravitational Influence (2009) Adv. Space Res., 43, pp. 1070-1082; Valk, S., Delsate, N., Lemaître, A., Carletti, T., Global Dynamics of High Area-to-Mass Ratios GEO Space Debris by Means of the MEGNO Indicator (2009) Adv. Space Res., 43, pp. 1509-1526; Wytrzyszczak, I., Breiter, S., Borczyk, W., Regular and Chaotic Motion of High Altitude Satellites (2007) Adv. Space Res., 40, pp. 134-142
Correspondence Address Kuznetsov, E. D.; Ural State University, Ekaterinburg, Russian Federation
Language of Original Document English
Abbreviated Source Title Sol. Syst. Res.
Source Scopus