Stability of planetary systems with respect to masses / Kholshevnikov K.V., Kuznetsov E.D. // Celestial Mechanics and Dynamical Astronomy. - 2011. - V. 109, l. 2. - P. 201-210.

ISSN:
09232958
Type:
Article
Abstract:
The stability in the sense of Lagrange of the Sun-Jupiter-Saturn system and 47 UMa system with respect to masses on a time scale of 106 years was studied using the method of averaging and numerical methods. When the masses of Jupiter and Saturn increase by 20 times (approximately, more accurate value depends on a time-scale of stable motion), these planets can have close approaches. Close approaches appear when analyzing osculating elements; they are absent in the mean elements. A similar situation takes place in the case of 47 UMa and other exoplanetary systems. The study of Lagrange stability with respect to masses allows us to obtain upper limits for masses of extrasolar planets. © 2010 Springer Science+Business Media B.V.
Author keywords:
47 UMa planets; Close approaches; Escape; Method of averaging; Osculating and mean elements; Stability in the sense of Lagrange; Sun-Jupiter-Saturn system
Index keywords:
нет данных
DOI:
10.1007/s10569-010-9324-0
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79251633922&doi=10.1007%2fs10569-010-9324-0&partnerID=40&md5=d559bb1820128f9320e13b7f7b444d2a
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-79251633922&doi=10.1007%2fs10569-010-9324-0&partnerID=40&md5=d559bb1820128f9320e13b7f7b444d2a
Affiliations St. Petersburg State University, Universitetsky pr. 28, St. Petersburg 198504 Stary Peterhof, Russian Federation; Ural State University, pr. Lenina 51, 620083 Ekaterinburg, Russian Federation
Author Keywords 47 UMa planets; Close approaches; Escape; Method of averaging; Osculating and mean elements; Stability in the sense of Lagrange; Sun-Jupiter-Saturn system
References Butler, R.P., Marcy, G.W., A planet orbiting 47 Ursae Majoris (1996) Astrophys. J., 464, pp. L153-L156; Butler, R.P., Wright, J.T., Marcy, G.W., Catalog of nearby exoplanets (2006) Astrophys. J., 646, pp. 505-522; Chambers, J.E., A hybrid symplectic integrator that permits close encounters between massive bodies (1999) Mon. Not. R. Astron. Soc., 304, pp. 793-799; Chetaev, N.G., Stability of motion (1946) Gostekhisdat, , Moscow - Leningrad (4th edition: 1990, Nauka, Moscow), (in Russian); Everhart, E., Implicit single methods for integrating orbits (1974) Celest. Mech., 10, pp. 35-55; Fischer, D.A., A second planet orbiting 47 Ursae Majoris (2002) Astrophys. J., 564, pp. 1028-1034; Georgakarakos, N., Stability criteria for hierarchical triple systems (2008) Celest. Mech. Dyn. Astron., 100, pp. 151-168; Gladman, B., Dynamics of systems of two close planets (1993) Icarus, 106, pp. 247-263; Goldstein, D., (1996) The Near-optimality of Stormer Methods For Long Time Integrations of Y" = G(y), , Ph. D. Dissertation, Univ. of California, Los Angeles, Dept. of Mathematics; Goździewski, K., Stability of the 47 UMa planetary system (2002) Astron. Astrophys., 393, pp. 997-1013; Hairer, E., Norsett, S.P., Wanner, G., (1993) Solving Ordinary Differential Equations I, , Nonstiff problems. Second revised edition; Ito, T., Miyama, S.M., An estimation of upper limit masses of υ And planets (2000) Proceedings of 32nd Symposium Celest, pp. 194-205. , Mech. University Advanced Studies, Hayama, Kanagawa, Japan; Ito, T., Miyama, S.M., An estimation of upper limit masses of υ And planets (2001) Astrophys. J., 552, pp. 372-379; Kuznetsov, E.D., Kholshevnikov, K.V., Planet mass stability margin of two-planetary systems (2009) Sol. Syst. Res., 43, pp. 220-228; Laughlin, G., Chambers, J., Fisher, D., A dynamical analysis of the 47 Ursae Majoris planetary system (2002) Astrophys. J., 579, pp. 455-467; Marchal, C., Bozis, G., Hill stability and distance curves for the general three-body problem (1982) Celest. Mech., 26, pp. 311-333; Milani, A., Nobili, A.M., On topological stability in the general three-body problem (1983) Celest. Mech., 31, pp. 213-240; Nacozy, P.E., On the stability of the Solar System (1976) Astron. J., 81, pp. 787-791; Nacozy, P.E., A discussion of long-term numerical solutions of the Jupiter-Saturn-Sun system (1977) Celest. Mech., 16, pp. 77-86; Naef, D., Mayor, M., Beuzit, J.L., The ELODIE survey for northern extra-solar planets. III. Three planetary candidates detected with ELODIE (2004) Astron. Astrophys., 414, pp. 351-359; Pitjeva, E.V., The dynamical model of the planet motions and EPM ephemerides (2007) Highlights Astron., 14, p. 470; Standish, E.M., (1998) JPL Planetary and Lunar Ephemerides, DE405/LE405, p. 18. , Interoffice Memorandum. 312. F-98-048. JPL; Sukhotin, A.A., Kholshevnikov, K.V., Planetary orbits evolution for 200 000 years calculated by the method of Halphen-Goriachev (1986) Astronomia I Geodesia. Tomsk, Tomsk University Publ., 14, pp. 5-21. , (in Russian); Varadi, F., (1999) NBI. a Set of Numerical Integrators For the Gravitational N-body Problem, , http://www.atmos.ucla.edu/~varadi; Wittenmyer, R.A., Endl, M., Cochran, W.D., Long-period objects in the extrasolar planetary systems 47 Ursae Majoris and 14 Herculis (2007) Astrophys. J., 654, pp. 625-632; Wittenmyer, R.A., Endl, M., Cochran, W.D., A search for multi-planet systems using the Hobby-Eberly telescope (2009) Astrophys. J. Suppl. Ser., 182, pp. 97-119
Correspondence Address Kuznetsov, E. D.; Ural State University, pr. Lenina 51, 620083 Ekaterinburg, Russian Federation; email: eduard.kuznetsov@usu.ru
Language of Original Document English
Abbreviated Source Title Celest. Mech. Dyn. Astron.
Source Scopus