Dynamical evolution of weakly disturbed two-planetary system on cosmogonic time scales: The Sun-Jupiter-Saturn system / Kuznetsov E.D., Kholshevnikov K.V. // Solar System Research. - 2006. - V. 40, l. 3. - P. 239-250.

ISSN:
00380946
Type:
Article
Abstract:
In the present paper, we used the Hori-Deprit method to construct the averaged Hamiltonian of the two-planetary problem accurate to the second order of a small parameter, the generating function of the transform, the change of variables formulas, and the right-hand sides of the equations in average elements. The evolution of the two-planet Sun-Jupiter-Saturn system was investigated by numerical integration over 10 billion years. The motion of the planets has an almost periodic character. The eccentricities and inclinations of Jupiter's and Saturn's orbits remain small but different from zero. The short-term disturbances remain small over the entire period considered in the study. © Pleiades Publishing, Inc., 2006.
Author keywords:
Index keywords:
нет данных
DOI:
10.1134/S0038094606030087
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745207573&doi=10.1134%2fS0038094606030087&partnerID=40&md5=355e20e2886071da6d72e50dce54ba6a
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745207573&doi=10.1134%2fS0038094606030087&partnerID=40&md5=355e20e2886071da6d72e50dce54ba6a
Affiliations Ural State University, pr. Lenina 51, Yekaterinburg, 620083, Russian Federation; Sobolev Astronomical Institute, St. Petersburg State University, Universitetskii pr. 28, St. Petersburg, 198504, Russian Federation
References Brumberg, V.A., (1980) Analiticheskie Algoritmy Nebesnoi Mekhaniki (Analytical Algorithms of Celestial Mechanics), , Moscow: Nauka; Charlier, C., (1927) Die Mechanik des Himmels, , Berlin: Walter de Gruyter, Translated under the title Nebesnaya mekhanika, Moscow: Nauka, 1966; Danilov, V.M., Dorogaytseva, L.V., Estimates of relaxation times in numerical dynamical models of open star clusters (2003) Astron. Zh., 80 (6), pp. 526-534; Astron. Rep. (Engl. Transl.), 47 (6), pp. 483-491; Everhart, E., Implicit single methods for integrating orbits (1974) Celest. Mech., 10, pp. 35-55; Ivanova, T.V., Poisson series processor (PSP) (1997) Preprint of Institute of Theoretical Astronomy, Russian Academy of Sciences, (64). , St. Petersburg; Ivanova, T., A new echeloned poisson series processor (EPSP) (2001) Celest. Mech. Dyn. Astron., 80, pp. 167-176; Kholshevnikov, K.V., (1985) Asimptoticheskie Melody Nebesnoi Mekhaniki (Asymptotic Methods in Celestial Mechanics), , Leningrad: Leningr. Gos. Univ; Kholshevnikov, K.V., Preservation of the form of area integrals in averaging transformations (1991) Astron. Zh., 68, pp. 660-663; (1991) Astron. Rep. (Engl. Transl.), 35, p. 325; Kholshevnikov, K.V., D'Alembertian functions in celestial mechanics (1997) Astron. Zh., 74 (1), pp. 146-153; Astron. Rep. (Engl. Transl.), 41 (1), pp. 135-142; Kholshevnikov, K.V., The hamiltonian in the planetary or satellite problem as a D'Alembertian function (2001) Astron. Zh., 78 (7), pp. 669-672; Astron. Rep. (Engl. Transl.), 45 (7), pp. 577-579; Kholshevnikov, K.V., Greb, A.V., Kuznetsov, E.D., The expansion of the hamiltonian of the planetary problem into the poisson series in all keplerian elements (theory) (2001) Astron. Vestn., 35 (3), pp. 267-272; Sol. Syst. Res. (Engl. Transl.), 35 (3), p. 243248; Kholshevnikov, K.V., Greb, A.V., Noncanonical parametrization of poisson brackets in celestial mechanics (2001) Astron. Vestn., 35 (5), pp. 457-462; Sol. Syst. Res. (Engl. Transl.), 35 (5), p. 415; Kholshevnikov, K.V., Greb, A.V., Kuznetsov, E.D., The expansion of the hamiltonian of the two-planetary problem into a poisson series in all elements: Estimation and direct calculation of coefficients (2002) Astron. Vestn., 36 (1), pp. 75-87; Sol. Syst. Res. (Engl. Transl.), 36 (1), pp. 68-79; Kuznetsov, E.D., Kholshevnikov, K.V., Expansion of the hamiltonian of the two-planetary problem into the poisson series in all elements: Application of the poisson series processor (2004) Astron. Vestn., 38 (2), pp. 171-179; Sol. Syst. Res. (Engl. Transl.), 38 (2), pp. 147-154; Simon, J.L., Bretagnon, P., Chapront, J., Numerical expressions for precession formulae and mean elements for the moon and the planets (1994) Astron. Astrophys., 282, pp. 663-683; Smart, W., (1953) Celestial Mechanics, , London: Longmans, Green and Co; (1965) Nebesnaya Mekhanika, , Orlov, A.A., Ed., Moscow: Mir
Correspondence Address Kuznetsov, E.D.; Ural State University, pr. Lenina 51, Yekaterinburg, 620083, Russian Federation
Language of Original Document English
Abbreviated Source Title Sol. Syst. Res.
Source Scopus