Behaviour of a two-planetary system on a cosmogonic time-scale / Kholshevnikov K.V., Kuznetsov E.D. // Proceedings of the International Astronomical Union. - 2004. - V. 2004, l. IAUC197. - P. 107-112.

ISSN:
17439213
Type:
Conference Paper
Abstract:
The orbital evolution of planetary systems similar to our Solar one represents one of the most important problems of Celestial Mechanics. In the present work we use Jacobian coordinates, introduce two systems of osculating elements, construct the Hamiltonian expansions in Poisson series for all the elements for the planetary three-body problem (including the problem Sun-Jupiter-Saturn). Further we construct the averaged Hamiltonian by the Hori-Deprit method with accuracy up to second order with respect to the small parameter, the generating function, the change of variables formulae, and the right-hand sides of the averaged equations. The averaged equations for the Sun-Jupiter-Saturn system are integrated numerically over a time span of 10 Gyr. The Liapunov Time turns out to be 14 Myr (Jupiter) and 10 Myr (Saturn). © 2005 International Astronomical Union.
Author keywords:
Analytical; Celestial mechanics; Jupiter; Methods; Numerical; Planets and satellites; Saturn
Index keywords:
нет данных
DOI:
10.1017/S1743921304008567
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864460246&doi=10.1017%2fS1743921304008567&partnerID=40&md5=0429606aaef14cabcbe0b6235d5b9bee
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864460246&doi=10.1017%2fS1743921304008567&partnerID=40&md5=0429606aaef14cabcbe0b6235d5b9bee
Affiliations Sobolev Astronomical Institute, St.Petersburg State University, Universitetsky pr.,28, St.Petersburg, Stary Peterhof, 198504, Russian Federation; Astronomical Observatory, Urals State University, Lenin pr., 51, Ekaterinburg, 620083, Russian Federation
Author Keywords Analytical; Celestial mechanics; Jupiter; Methods; Numerical; Planets and satellites; Saturn
References Brumberg, V.A., (1995) Analytical Techniques of Celestial Mechanics, , Springer, Heidelberg; Charlier, C.L., (1927) Die Mechanik des Himmels, , Walter de Gruyter & Co., Berlin und Leipzig; Greb, A.V., (2002), PhD thesis, St. Petersburg State University, St. Petersburg; Ivanova, T.V., (1996) Dynamics, Ephemerides and Astrometry of the Solar System, p. 283. , S.Ferraz-Mello, B.Morando and J.-E.Arlot (eds.) , IAU Symp. 172, (Kluwer Academic Publishers; Ivanova, T., (2001) Cel. Mech. Dyn. Astron., 80, p. 167; Kholshevnikov, K.V., (1991) Astron. Zh., 68, p. 660; Kholshevnikov, K.V., (1997) Astron. Rep., 41, p. 135; Kholshevnikov, K.V., (2001) Astron. Rep., 45, p. 577; Kholshevnikov, K.V., Greb, A.V., Kuznetsov, E.D., (2001) Solar System Res., 35, p. 243; Kholshevnikov, K.V., Greb, A.V., (2001) Solar System Res., 35, p. 415; Kholshevnikov, K.V., Greb, A.V., Kuznetsov, E.D., (2002) Solar System Res., 36, p. 68; Kuznetsov, E.D., Kholshevnikov, K.V., (2004) Solar System Res., 38, p. 147; Laskar, J., Robutel, P., (1995) Cel. Mech. Dyn. Astron., 62, p. 193; Michtchenko, T.A., Ferraz-Mello, S., (2001) Icarus, 149, p. 357; Robutel, P., (1993) Cel. Mech. Dyn. Astron., 56, p. 197; Robutel, P., (1993) Cel. Mech. Dyn. Astron., 57, p. 97; Robutel, P., (1995) Cel. Mech. Dyn. Astron., 62, p. 219; Rom, A., (1971) Celest. Mech., 3, p. 331; Smart, W.M., (1953) Celestial Mechanics, , . (Longmans Green and Co., London, New York, Toronto; Subbotin, M.F., (1968) Introduction to Theoretical Astronomy, , Nauka, Moscow
Correspondence Address Kholshevnikov, K.V.; Sobolev Astronomical Institute, St.Petersburg State University, Universitetsky pr.,28, St.Petersburg, Stary Peterhof, 198504, Russian Federation; email: kvk@astro.spbu.ru
Publisher Cambridge University Press
Language of Original Document English
Abbreviated Source Title Proc. Int. Astron. Union
Source Scopus