Nonlinear evolution of a balloon satellite orbit / Kuznetsov E.D., Sokolov L.L. // Cosmic Research. - 2001. - V. 39, l. 6. - P. 607-614.

ISSN:
00109525
Type:
Article
Abstract:
The motion of a spherically symmetric balloon satellite near the equatorial plane is considered. Taking the Earth's oblateness and solar light pressure into account, the integral of motion can be obtained under certain simplifications. The eccentricity is related to the solar angle which represents an angle between pericenter and the Sun. This analytical approximation describes a large and complicated evolution of the eccentricity in corresponding areas of the phase space and the space of parameters. Phase portraits contain fixed saddle points and separatrices that divide different types of oscillations of the eccentricity. In the unsimplified problem, separatrices break down, and specific stochastic motions arise. The aims of the present study are (1) evaluation of the accuracy of analytical approximation with the help of numerical integration using a sufficiently complete model of motion and (2) numerical investigation of stochastic motions and dimensions of stochastic zones in the region of broken separatrices for an adequate model of motion. For a balloon satellite with a semimajor axis of 2.15 Earth's radii and a windage of 30 cm2/g the dimensions of a stochastic zone in eccentricity and solar angle are 10-5 and 0.1°, respectively. The analytical approximation describes the orbit evolution in the right way, except for the cases of large eccentricities, e > 0.4, which corresponds to a pericenter height of less than 1400 km, where the atmospheric drag is already significant. © 2001 MAIK "Nauka/Interperiodica".
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-27144440538&partnerID=40&md5=bb3816093466ea0dd0c874a6edeb718f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-27144440538&partnerID=40&md5=bb3816093466ea0dd0c874a6edeb718f
Affiliations Astronomical Observatory, Ural State University, Yekaterinburg, Russian Federation; Astronomical Institute, St. Petersburg State University, St. Petersburg, Russian Federation
References Bordovitsina, T.V., (1986) Sovremennye Chislennye Metody v Zadachakh Nebesnoi Mekhaniki (Modern Numerical Methods in the Problems of Celestial Mechanics), , Moscow: Nauka; Shcherbakova, N.N., Beletskii, V.V., Sazonov, V.V., Stabilization of Heliosynchronous Orbits of an Artificial Earth Satellite by Solar Pressure Force (1996) Kosm. Issled., 34 (3), pp. 332-334; Hamilton, D.P., Motion of Dust in a Planetary Magnitosphere - Orbitaveraged Equations for Oblateness, Electromagnetic, and Radiation Forces with Application to Saturn's e Ring (1993) Icarus, 101, pp. 244-264. , Erratum: Icarus, vol. 103, p. 161; Hamilton, D.P., Krivov, A.V., Circumplanetary Dust Dynamics: Effects of Solar Gravity, Radiation Pressure, Planetary Oblateness, and Electromagnetism (1996) Icarus, 123, pp. 503-523; Ishimoto, H., Formation of Phobos/Deimos Dust Rings (1996) Icarus, 122, pp. 153-165; Krivov, A.V., Sokolov, L.L., Dikarev, V.V., Dynamics of Mars-Orbiting Dust: Effects of Light Pressure and Planetary Oblateness (1996) Celestial Mechanics and Dynamical Astronomy, 63, pp. 313-339; Krivov, A.V., Getino, J., Orbital Evolution of High-Altitude Balloon Satellites (1997) Astron. Astrophys., 318, pp. 308-314; Krivov, A.V., Sokolov, L.L., Getino, J., Orbital Instability Zones of Space Balloon (1997) Dynamics and Astrometry of Natural and Artificial Celestial Bodies, pp. 361-366. , Wytrzyszczak, I.M., Lieske, J.H., and Feldman, R.A., Eds., Kluwer Academic
Correspondence Address Kuznetsov, E.D.; Astronomical Observatory, Ural State University, Yekaterinburg, Russian Federation
Language of Original Document English
Abbreviated Source Title Cosm. Res.
Source Scopus