Role of the electronic state of rhodium in sodium borohydride hydrolysis / Netskina O.V., Kochubey D.I., Prosvirin I.P., Kellerman D.G., Simagina V.I., Komova O.V. // Journal of Molecular Catalysis A: Chemical. - 2014. - V. 390, l. . - P. 125-132.

ISSN:
13811169
Type:
Article
Abstract:
The activity of Rh/TiO2 catalysts subjected to a thermal treatment at different temperatures prior to their reduction has been studied in a NaBH4 hydrolysis medium. It was found that the sodium borohydride hydrolysis rate increases with increasing the treatment temperature of unreduced catalysts. The state of rhodium in reduced Rh/TiO2 has been studied by a set of physical methods. In the catalyst calcined at 300 °C, nanoscale electron-deficient particles of rhodium were observed on the surface of titanium dioxide. The study confirmed that the decrease in the electronic density on the metal particles was due to interfacial charge redistribution between metal and semiconducting oxide. The presence of electron-deficient Rh particles on the catalyst surface leads to an enhanced decomposition of negatively charged BH4 - ions and reduction of water to hydrogen proceeding by an electrochemical mechanism. © 2014 Elsevier B.V.
Author keywords:
Electron-deficient metal nanoparticles; Rhodium; Sodium borohydride hydrolysis; Titanium dioxide
Index keywords:
Catalysts; Hydrolysis; Oxides; Reduction; Titanium dioxide; Electrochemical mechanisms; Electron-deficient; Electronic density; Interfacial charge; Negatively charged; Semiconducting oxide; Sodium bor
DOI:
10.1016/j.molcata.2014.03.016
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902290455&doi=10.1016%2fj.molcata.2014.03.016&partnerID=40&md5=c22d14555715bbf1cb37e555bfe0d6c4
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902290455&doi=10.1016%2fj.molcata.2014.03.016&partnerID=40&md5=c22d14555715bbf1cb37e555bfe0d6c4
Affiliations Boreskov Institute of Catalysis SB RAS, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation; Institute of Solid State Chemistry UrB RAS, Pervomaiskaya Street 91, Ekaterinburg 620219, Russian Federation; Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russian Federation
Author Keywords Electron-deficient metal nanoparticles; Rhodium; Sodium borohydride hydrolysis; Titanium dioxide
References Demirci, U.B., Akdim, O., Andrieux, J., Hannauer, J., Chamoun, R., Miele, P., (2010) Fuel Cells, 10, pp. 335-350; Brown, M.C., Brown, C.A., (1962) JACS, 84, pp. 1493-1494; Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., Hayashi, H., (2002) Int. J. Hydrogen Energy, 27, pp. 1029-1034; Garron, A., Bennici, S., Auroux, A., (2010) Appl. Catal., A, 378, pp. 90-95; Holbrook, K.A., Twist, P.J., (1971) J. Chem. Soc. A, 15, pp. 890-894; Valsiuniene, J., Norgailaite, A., (1975) Proc. Lith. Acad. Sci. Ser. B, 91, pp. 11-15. , (Lietuvos TSR Mokslu Akademijos Darbai - Serija B); Valsiuniene, J., Prokopchik, A., Salkauskiene, J., (1972) Proc. Lith. Acad. Sci. Ser. B, 70, pp. 3-11. , (Lietuvos TSR Mokslu Akademijos Darbai - Serija B); Stakheev, A.Yu., Kustov, L.M., (1999) Appl.Catal., A, 188, pp. 3-35; Delmon, B., (1990) J. Mol. Catal., 59, pp. 179-206; Tauster, S.J., Fung, S.C., Garten, R.L., (1978) J. Am. Chem. Soc., 100, pp. 170-175; Huang, B.-S., Chang, F.-Y., Wey, M.-Y., (2010) Int. J. Hydrogen Energy, 35, pp. 7699-7705; Fu, Q., Wagner, T., (2007) Surf. Sci. Rep., 62, pp. 431-498; Ioannides, T., Verykios, X.E., (1996) J. Catal., 161, pp. 560-569; Socolova, N.P., (2004) Colloids Surf., A, 239, pp. 125-127; Fu, Q., Wagner, T., Olliges, S., Carstanjen, H.D., (2005) J. Phys. Chem. B, 109, pp. 944-951; Anděra, V., (1991) Appl. Surf. Sci., 51, pp. 1-8; Kaise, M., Nagai, H., Tokuhashi, K., Kondo, S., Nimura, S., Kikuchi, O., (1994) Langmuir, 10, pp. 1345-1347; Simagina, V.I., Storozhenko, P.A., Netskina, O.V., Komova, O.V., Odegova, G.V., Larichev, Y., Ishchenko, A.V., Ozerova, A.M., (2008) Catal. Today, 138, pp. 253-259; Simagina, V.I., Netskina, O.V., Komova, O.V., Odegova, G.V., Kochubei, D.I., Ishchenko, A.V., (2008) Kinet. Catal., 49, pp. 568-573; Larichev, Yu.V., Netskina, O.V., Komova, O.V., Simagina, V.I., (2010) Int. J. Hydrogen Energy, 35, pp. 6501-6507; Simagina, V.I., Netskina, O.V., Tayban, E.S., Komova, O.V., Grayfer, E.D., Ischenko, A.V., Pazhetnov, E.M., (2010) Appl. Catal., A, 379, pp. 87-94; Scofield, J.H., (1976) J. Electron Spectrosc. Relat. Phenom., 8, pp. 129-137; Klementev, K.V., (2001) J. Phys. D: Appl. Phys., 34, pp. 209-217; Rehr, J.J., Ankudinov, A.L., (2004) Radiat. Phys. Chem., 70, pp. 453-463; Vainshtein, B.K., Zvyagin, B.B., Avilov, A.S., (1992) Electron Diffraction Techniques, p. 216. , Oxford Univ. Press Oxford; Miao, L., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabaid, N., Tanemura, S., (2003) Appl. Surf. Sci., 212-213, pp. 255-263; Bernal, S., Calvino, J.J., Cauqui, M.A., Gatica, J.M., López Cartes, C., Pérez Omil, J.A., Pintado, J.M., (2003) Catal. Today, 77, pp. 385-406; Haller, G.L., Resasco, D.E., (1989) Adv. Catal., 36, pp. 173-235; Berkío, A., Ulrych, I., Prince, K.C., (1998) J. Phys. Chem. B, 102, pp. 3379-3386; Sadeghi, H.R., Henrich, V.E., (1984) Appl. Surf. Sci., 19, pp. 330-340; Braunschweig, E.J., Logan, A.D., Datye, A.K., Smith, D.J., (1989) J. Catal., 118, pp. 227-237; Gnutzman, V., Vogel, W., (1990) J. Phys. Chem., 94, pp. 4991-4997; Joyner, R.W., (1980) J. Chem. Soc., Faraday Trans. i, 76, pp. 357-361; Ohno, T., Murakami, N., Tsubota, T., Nishimura, H., (2008) Appl. Catal., A, 349, pp. 70-75; Choi, W., Termin, A., Hoffmann, M.R., (1994) J. Phys. Chem., 98, pp. 13669-13679; Carter, C.B., Norton, M.G., (2007) Ceramic Materials: Science and Engineering, p. 716. , Springer New York; Guthrie, A.N., Bourland, L.T., (1931) Phys. Rev., 37, pp. 303-308; Coey, J.M.D., (2010) Magnetism and Magnetic Materials, p. 625. , Cambridge University Press Cambridge; Davis, R.E., Swein, C.C., (1960) JACS, 82, pp. 5949-5950; Stoji, D.L.J., Miljani, E.S., Grozdi, T.D., Petkovska, L.T., Jaki, M.M., (2000) Int. J. Hydrogen Energy, 25, pp. 819-823; Mesmer, R.E., Jolly, W.L., (1962) Inorg. Chem., 1, pp. 608-612; Zhang, J.S., Delgass, W.N., Fisher, T.S., Gore, J.P., (2007) J. Power Sources, 164, pp. 772-781; Hung, A.-J., Tsai, S.-F., Hsu, Y.-Y., Ku, J.-R., Chen, Y.-H., Yu, C.-C., (2008) Int. J. Hydrogen Energy, 33, pp. 6205-6215; Davis, R.E., Bloomer, J.A., Cosper, D.R., Saba, A., (1964) Inorg. Chem., 3, pp. 460-461; Prokopchik, A., Salkauskiene, J., (1971) Proc. Lith. Acad. Sci. Ser. B, 64, pp. 3-11. , (Lietuvos TSR Mokslu Akademijos Darbai - Serija B); Elder, J.P., Hickling, A., (1962) Trans. Faraday Soc., 58, pp. 1852-1864
Correspondence Address Netskina, O.V.; Boreskov Institute of Catalysis SB RAS, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation; email: netskina@catalysis.ru
Publisher Elsevier
CODEN JMCCF
Language of Original Document English
Abbreviated Source Title J. Mol. Catal. A Chem.
Source Scopus