Peculiarities of antiferromagnetic ordering in orthorhombic LiMnO 2 / Kellerman D.G., Zhuravlev N.A., Verkhovskiǐ S.V., Medvedev E.Yu., Korolev A.V., Medvedeva J.E. // Physics of the Solid State. - 2008. - V. 50, l. 7. - P. 1294-1302.

ISSN:
10637834
Type:
Article
Abstract:
Data on the antiferromagnetic ordering in orthorhombic lithium manganite LiMnO2 are obtained from magnetic-susceptibility, calorimetry, and nuclear magnetic resonance studies. The minimal hysteresis and the absence of jumps in the temperature dependences of the sublattice magnetization M(T) and the magnetic susceptibility near T N indicate that the ordering occurs through a continuous second-order phase transition. Within the critical temperature range, the M(T-T N) variation is satisfactorily described by a power-law dependence with a critical exponent β = 0.25(4), which is substantially smaller than that predicted for 3D magnetic systems with isotropic Heisenberg exchange. The band structure of orthorhombic LiMnO2 is calculated using the LMTO-ASA method. Taking into account the spin states of manganese ions, an adequate pattern is obtained for the density-of-states distribution with an energy gap near the Fermi level (0.7 eV), which is in agreement with the measured electrical parameters of lithium manganite. The calculations demonstrate that the exchange interactions between Mn3+ ions leading to antiferromagnetic ordering are significantly anisotropic. It is found that small paramagnetic regions persist in the manganite below the Néel temperature, and it is concluded that the reason for this is partial structural disordering of LiMnO2. As a result, a certain fraction of the manganese positions is occupied by lithium ions (LiMn) and vise versa (MnLi). These defects are not involved in the formation of the ordered magnetic structure and compose a paramagnetic fraction. © 2008 Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
нет данных
DOI:
10.1134/S1063783408070160
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-47249126253&doi=10.1134%2fS1063783408070160&partnerID=40&md5=fc6aeacad4dd55442bb757f55c836c70
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-47249126253&doi=10.1134%2fS1063783408070160&partnerID=40&md5=fc6aeacad4dd55442bb757f55c836c70
Affiliations Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences, ul. Pervomaǐskaya 91, Yekaterinburg 620041, Russian Federation; Institute of Metal Physics, Ural Division, Russian Academy of Sciences, Yekaterinburg 620041, Russian Federation; Department of Physics, University of Missouri, Rolla, MO 65409, United States
References Hewston, T.A., Chamberland, B.L., (1987) J. Phys. Chem. Solids, 48, p. 97; Kellerman, D.G., (2001) Usp. Khim., 70, p. 874; Bongers, P.F., (1957), PhD Thesis (The University of Leiden, The Netherlands); Greedan, J.E., Raju, N.P., Davidson, I.J., (1997) J. Solid State Chem., 128, p. 209; Kellerman, D.G., Medvedeva, J.E., Kurbakov, V.S.G.A.I., Zubkov, V.G., Tyutyunnik, A.P., Trunov, V.A., (2007) Solid State Sci., 9, p. 196; Zabolotskaya, E.V., Zolotukhina, L.V., Gorshkov, V.S., Karelina, V.V., Kellerman, D.G., (2001) Zh. Neorg. Khim., 46, p. 1358. , 8. [Russ. J. Inorg. Chem. 46 (8), 1224 (2001)]; Ditrich, G., Hoppe, R., (1969) Z. Anorg. Allg. Chem., 368, p. 262; Andersen, O.K., Jepsen, O., (1984) Phys. Rev. Lett., 53, p. 2571; Lichtenstein, A.I., Anisimov, V.I., Zaanen, J., (1995) Phys. Rev. B: Condens. Matter, 52, p. 5467; Kellerman, D.G., Gorshkov, V.S., Zubkov, V.G., Perelyaev, V.A., Galakhov, V.R., Kurmaev, E.Z., Uhlenbrock, S., Neumann, M., (1997) Zh. Neorg. Khim., 42, p. 1012. , 6. [Russ. J. Inorg. Chem. 42 (6), 914 (1997)]; Rakitin Yu., V., Kalinnikov, V.T., (1984) Modern Magnetochemistry, , Nauka Leningrad; Martin, R.L., Hill, H.A.O., Day, P., (1968) Physical Methods in Advanced Inorganic Chemistry, , Interscience London; Fisher, M.E., (1960) Proc. R. Soc. London, Ser. A, 254, p. 66; Abragam, A., (1961) The Principles of Nuclear Magnetism, , Clarendon Oxford; Carter, G.C., Bennett, L.H., Kahan, D.J., Chalmers, B., Christian, J.W., Massalski, T.B., (1977) Progress in Material Science, , Pergamon Oxford; Gorshkov, V.S., Karelina, V.V., Kellerman, D.G., (2000) All-Russian Conference "chemistry of the Solid State and Functional Materials," Yekaterinburg, Russia, 2000, p. 108. , Abstracts of Papers of the Yekaterinburg [in Russian]; Shukla, N., Rajendra, P., (2006) J. Phys. Chem. Solids, 67, p. 1731; Galakhov, V.R., Korotin, M.A., Ovechkina, N.A., Kurmaev, E.Z., Gorshkov, V.S., Kellerman, D.G., Bartkowski, S., Neumann, M., (2000) Eur. Phys. J. B, 14, p. 281; Smart, J.S., (1966) Effective Field Theories of Magnetism, , Saunders Philadelphia; Singh, R.P., Tao, Z.C., Singh, M., (1992) Phys. Rev. B: Condens. Matter, 46, p. 1244
Correspondence Address Kellerman, D. G.; Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences, ul. Pervomaǐskaya 91, Yekaterinburg 620041, Russian Federation; email: kellerman@ihim.uran.ru
Language of Original Document English
Abbreviated Source Title Phys. Solid State
Source Scopus