Thermoluminescence kinetics of oxygen-related centers in AlN single crystals / Weinstein I.A., Vokhmintsev A.S., Spiridonov D.M. // Diamond and Related Materials. - 2012. - V. 25, l. . - P. 59-62.

ISSN:
09259635
Type:
Article
Abstract:
Excitation and emission spectra of thermoluminescence (TL) in bulk aluminum nitride single crystals irradiated by UV have been studied. TL has been found to be most effectively excited by the 5.04 eV photons. The 3.44 eV band caused by recombination processes with oxygen-vacancy (V Al - O N)-centers dominates in the TL spectrum. Besides, the 2.91 and 2.0 eV emissions have been also observed. The TL mechanisms have been quantitatively analyzed in terms of formal kinetics of general order. On the basis of the obtained values and from their comparison with literature data it has been concluded that the main traps of charge carriers, responsible for the TL peak at 470 K, are formed by the V N vacancy. To interpret the observed regularities, the model of TL has been proposed, which satisfactorily agrees with independent data for thermally and optically stimulated processes in aluminum nitride. © 2012 Elsevier B.V. All rights reserved.
Author keywords:
Aluminum nitride; General order kinetics; Nitrogen vacancy; Optical properties; Oxygen impurity; Termally stimulated luminescence
Index keywords:
AlN single crystals; Excitation and emission spectra; Formal kinetics; Literature data; Nitrogen vacancies; Oxygen impurity; Recombination process; Stimulated luminescence; Stimulated process; Aluminu
DOI:
10.1016/j.diamond.2012.02.004
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857679409&doi=10.1016%2fj.diamond.2012.02.004&partnerID=40&md5=d02b52bb548b88c4926ce098e55ad19f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857679409&doi=10.1016%2fj.diamond.2012.02.004&partnerID=40&md5=d02b52bb548b88c4926ce098e55ad19f
Affiliations Ural Federal University, REC Nanomaterials and Nanotechnologies, Mira Street, 19, Ekaterinburg, 620002, Russian Federation
Author Keywords Aluminum nitride; General order kinetics; Nitrogen vacancy; Optical properties; Oxygen impurity; Termally stimulated luminescence
References Trinkler, L., Berzina, B., (2011) Advances in Ceramics - Characterization, Raw Materials, Processing, Properties, Degradation and Healing, InTech, pp. 59-82. , C. Sikalidis; Trinkler, L., Berzina, B., Auzina, A., Benabdesselam, M., Iacconi, P., (2002) Nucl. Instrum. Methods Phys. Res. A, 580, p. 354; Tanaka, S., Hu, Q., Grishmanov, V., Yoneoka, T., (1998) Nucl. Instrum. Methods Phys. Res. B, 141, p. 547; Vokhmintsev, A.S., Weinstein, I.A., Spiridonov, D.M., Beketov, D.A., Beketov, A.R., (2012) Tech. Phys. Lett, 38; Trinkler, L., Botter-Jensen, L., Christensen, P., Berzina, B., (2000) Radiat. Prot. Dosim., 92, p. 299; Pacesova, S., Jastrabik, L., (1979) Czech. J. Phys. B, 29, p. 913; Harris, J.H., Youngman, R.A., Teller, R.G., (1990) J. Mater. Res., 5, p. 1763; Schweizer, S., Rogulis, U., Spaeth, J.-M., Trinkler, L., Berzina, B., (2000) Phys. Status Solidi B, 219, p. 171; Evans, S.M., Giles, N.C., Halliburton, L.E., Slack, G.A., Schujman, S.B., Schowalter, L.J., (2006) Appl. Phys. Lett., 88, pp. 0621121-0621123; Soltamov, V.A., Ilyin, I.V., Soltamova, A.A., Mokhov, E.N., Baranov, P.G., (2010) J.Appl. Phys., 107, pp. 1135151-1135153; Tang, Y., Cong, H., Li, F., Cheng, H.-M., (2007) Diamond Relat. Mater., 1 (6), p. 537; Soltamov, V.A., Ilyin, I.V., Soltamova, A.A., Tolmachev, D.O., Mokhov, E.N., Baranov, P.G., (2011) Phys. Solid State, 53, p. 1186; Bickermann, M., Epelbaum, B.M., Filip, O., Heimann, P., Feneberg, M., Nagata, S., Winnacker, A., (2010) Phys. Status Solidi C, 7, p. 1743; Mokhov, E.N., Avdeev, O.V., Barash, I.S., Chemekova, T.Y., Roenkov, A.D., Segal, A.S., Wolfson, A.A., Helava, H., (2005) J. Cryst. Growth, 281, p. 93; Maki, J.-M., Makkonen, I., Tuomisto, F., Karjalainen, A., Suihkonen, S., Raisanen, J., Chemekova, T.Yu., Makarov, Yu.N., (2011) Phys. Rev. B, 84, pp. 081204-081211; Benabdesselam, M., Iacconi, P., Lapraz, D., Grosseau, P., Guilhot, B., (1995) J. Phys. Chem., 99, p. 10319; Miyajima, T., Kudo, Y., Uruga, T., Hara, K., (2006) Phys. Status Solidi C, 3, p. 1742; Sarua, A., Rajasingam, S., Kuball, M., Garro, N., Sancho, O., Cros, A., Cantarero, A., Edgar, J.H., (2004) Mater. Res. Soc. Symp. Proc., 798, p. 297; Hu, Q., Noda, T., Tanigawa, H., Yoneoka, T., Tanaka, S., (2002) Nucl. Instrum. Methods Phys. Res. B, 19 (1), p. 536; Chen, R., McKeever, S.W.S., (1997) World Scientific Singapore; Weinstein, I.A., Vokhmintsev, A.S., Kortov, V.S., (2008) Radiat. Meas., 43, p. 259; Weinstein, I.A., Kortov, V.S., Vohmintsev, A.S., (2007) J. Lumin., 122-123, p. 342; Soltamov, V.A., Ilyin, I.V., Soltamova, A.A., Tolmachev, D.O., Mokhov, E.N., Baranov, P.G., (2011) Diamond Relat. Mater., 20, p. 1085; Tale, I., Rosa, J., (1984) Phys. Status Solidi A, 86, p. 319; Mattila, T., Nieminen, R.M., (1996) Phys. Rev. B, 54, p. 16776; Mattila, T., Nieminen, R.M., (1997) Phys. Rev. B, 55, p. 9571; Huang, H.M., Chen, R.S., Chen, H.Y., Liu, T.W., Kuo, C.C., Chen, C.P., Hsu, H.C., Yang, Y.J., (2010) Appl. Phys. Lett., 96, pp. 0621041-0621043
Correspondence Address Weinstein, I.A.; Ural Federal University, REC Nanomaterials and Nanotechnologies, Mira Street, 19, Ekaterinburg, 620002, Russian Federation; email: i.a.weinstein@ustu.ru
CODEN DRMTE
Language of Original Document English
Abbreviated Source Title Diamond Relat. Mat.
Source Scopus