References |
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2002) Molecular Biology of the Cell, , Garland Science, New York; Allen, T.D., Gronshow, J.M., Bagley, S., Kiseleva, E., Goldberg, M.W., The nuclear pore complex: mediator of translocation between nucleus and cytoplasm (2000) J. Cell. Sci., 113, pp. 1651-1659; Beard, D.A., A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation (2005) PLoS Comput. Biol., 1 (4), pp. e36. , 0252-0264; Beard, D.A., Qian, H., Relationship between thermodynamic driving force and one-way fluxes in reversible processes (2007) PLoS ONE, 2 (1), pp. e144; Beard, D.A., Qian, H., (2008) Chemical Biophysics. Quantitative Analysis of Cellular Systems, , Cambridge University Press, Cambridge; Berezovsky, I.N., Trifonov, E.N., Loop fold structure of proteins: resolution of Levinthal's paradox (2002) J. Biomolec. Str. Dyn., 20, pp. 5-6; Bose, S., French, S., Evans, F.J., Joubert, F., Balaban, R.S., Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate (2003) J. Biol. Chem., 278, pp. 39155-39165; Caplan, S.R., Essig, A., (1983) Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State, , Harvard, Cambridge, MA; Davis, L.J., The nuclear pore complex (1995) Ann. Rev. Biochem., 64, pp. 865-896; Davies, J.M., Hunt, J., Sanders, D., Vacuolar H +-pumping ATP-ase variable transport coupling ratio controlled by pH (1994) PNAS, 91, pp. 8547-8551; Dellen, B.K., Barber, M.J., Risting, M.L., Hescheler, J., Sauer, H., Wartenberg, M., [Ca 2+]-oscillations in a model of energy-dependent Ca 2+ uptake by the endoplasmic reticulum (2005) J. Theor. Biol., 237, pp. 279-290; Drozdowicz, Y.M., Rea, P.A., Valuolar H + pyrophosphatases: from the evolutionary backwaters into the mainstream (2001) Trends Plant Sci., 6 (5), pp. 206-211; Duchen, M.R., Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signaling and cell death (1999) J. Physiol., 516 (1), pp. 1-17; Gidon, S., Sihra, T., Characterization of a H +-ATPase in rat brain synaptic vesicles. Coupling to l-glutamate transport (1989) J. Biol. Chem., 264 (14), pp. 8281-8288; Glass, J.I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M.R., Maruf, M., Hutchison, C.A., Craig Venter, J., Essential genes of a minimal bacterium (2006) PNAS, 103 (2), pp. 425-430; Grabe, M., Wang, H., Oster, G., The mechanochemistry of V-ATPase proton pumps (2000) Biophys. J., 78, pp. 2798-2813; Grabe, M., Oster, J., Regulation of organelle acidity (2001) J. Gen. Physiol., 117, pp. 329-343; De Groot, S.R., Mazur, P., (1962) Non-equilibrium Thermodynamics, , North Holland, Amsterdam; Gunter, T., Pfeiffer, D., Mechanism by which mitochondria transport calcium (1990) Am. J. Physiol., 258 (27), pp. 755-786; Harada, K., Matsuoka, H., Nakamura, J., Fukuda, M., Inoue, M., Storage of GABA in chromaffin granules and not in synaptic-like microvesicles in rat adrenal medullary cells (2010) J. Neurochem., 114, pp. 617-626; Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., Plant cellular and molecular responses to high salinity (2000) Ann. Rev. Plant Physiol. Plant Mol. Biol., 51, pp. 463-499; Kjelstrup, S., Rubi, J.M., Bedeaux, D., Active transport: a kinetic description based on thermodynamic grounds (2005) J. Theor. Biol., 234 (1), pp. 7-12; Kundu, M., Thompson, C.B., Autophagy: basic principles and Relevance to Disease (2008) Ann. Rev. Pathol. Mech. Dis., 3, pp. 427-455; Lachamp, P., Crest, M., Kessler, J.-P., Vesicular glutamate transporters type 1 and 2 expressions in axon terminals of the rat nucleus of the solitary tract (2006) Neuroscience, 137, pp. 73-81; Lee, M.C.S., Miller, E.A., Goldberg, J., Orci, L., Schekman, R., Bi-directorial protein transport between ER and Golgi (2004) Ann. Rev. Cell. Dev. Biol., 20, pp. 87-123; Lowe, A.R., Siegel, J.J., Kalab, P., Siu, M., Weis, K., Liphardt, J.T., Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking (2000) Nature, 467, pp. 600-603; Magnus, G., Keizer, J., Minimal model of β-cell mitochondrial Ca +2 handling (1997) Am. J. Physiol., 273, pp. 717-733; Magnus, G., Keizer, J., Model of β-cell mitochondrial calcium handling and electrical activity. II Mitochondrial variables (1998) Am. J. Physiol., 274, pp. 1174-1184; Marhl, M., Schuster, S., Brumen, M., Heinrich, R., Modelling oscillations of calcium and endoplasmic reticulum transmembrane potential. Role of the signaling and buffering proteins and of the size Ca 2+ sequestering ER subcompartments (1998) Biol. Chem. Bioenerg., 46, pp. 79-90; Meissner, G., Ca 2+ release from sarcoplasmic reticulum (2001) Cell Physiology Sourcebook, pp. 927-940. , Academic Press, San Diego, N. Sperelakis (Ed.); Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 324 (3), pp. 403-412; Melkikh, A.V., Seleznev, V.D., Requirements on models and models of active transport of ions in biomembranes (2006) Bull. Math. Biol., 68 (2), pp. 385-399; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions (2006) J. Theor. Biol., 242 (3), pp. 617-626; Melkikh, A.V., Seleznev, V.D., Models of active transport of neurotransmitters in synaptic vesicles (2007) J. Theor. Biol., 248 (2), pp. 350-353; Melkikh, A.V., Seleznev, V.D., Nonequilibrium statistical model of active transport of ions and ATP production in mitochondria (2007) J. Biol. Phys., 33 (2), pp. 161-170; Melkikh, A.V., Sutormina, M.I., Model of active transport of ions in cardiac cell (2008) J. Theor. Biol., 252, pp. 247-254; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in archaea cells (2009) Bull. Math. Biol., 71 (2), pp. 383-398; Melkikh, A.V., Sutormina, M.I., Algorithms for optimization of the transport system in living and artificial cells (2011) Syst. Synth. Biol., 5 (1-2), pp. 87-96; Murtas, G., Question 7: construction of a semi-synthetic minimal cell: a model for early living cells (2007) Orig. Life Evol. Biosph., 37 (4-5), pp. 419-422; Nakamoto, R.K., Baylis Scanlon, J.A., Al-Shawi, M.K., The rotary mechanism of the ATP synthase (2008) Arch. Biochem. Biophys., 476, pp. 43-50; Nicholls, D.G., (1982) Bioenergetics and Introduction to the Chemiosmotic Theory, , Academic Press, London, New York, San Diego; Nicholls, J.G., Martin, A.R., Wallace, B.G., Fuchs, P.A., (2001) From Neuron to Brain, , Sinauer Assosiates inc; Oster, G.F., Perelson, A.S., Katchalsky, A., Network thermodynamics: dynamic modelling of biophysical systems (1973) Q. Rev. Biophys., 6 (1), pp. 1-134; Oster, G., Wang, H., Why is the efficiency of the F1 ATPase so high? (2000) J. Bioenerg. Biomembr., 32, pp. 459-469; Oster, G., Wang, H., Rotary protein motors (2003) Trends Cell Biol., 13 (3), pp. 114-121; Pokhilko, A.V., Ataullakhanov, F.I., Holmuhamedov, E.L., Mathematical model of mitochondrial ionic homeostasis: three modes of Ca 2+ transport (2006) J. Theor. Biol., 243 (1), pp. 152-169; Roz, N., Rehavi, M., Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane (2003) Life Sci., 73, pp. 461-470; Rybak, S., Lanni, F., Murphy, R., Theoretical considerations on the role of membrane potential in the regulation of endosomal pH (1997) Biophys. J., 73, pp. 674-687; Ryan, K.L., Wente, S.R., The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm (2000) Curr. Opin. Cell. Biol., 12, pp. 361-371; Santos, T.G., Souza, D.O., Tasca, C.I., GTP uptake into rat brainsynaptic vesicles (2006) Brain Res., 1070, pp. 71-76; Serrano, R., Rodriguez-Navarro, A., Ion homeostasis during salt stress in plants (2001) Curr. Opin. Cell Biol., 13, pp. 399-404; Shannon, T.R., Chu, G., Kranias, E.G., Bers, D.M., Phospholamban decrease the energetic efficiency of the sarcoplasmic reticulum Ca pump (2001) J. Biol. Chem., 276 (10), pp. 7195-7201; Shannon, T.R., Ginzburg, K.S., Bers, D.M., Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes (2000) Biophys. J., 78, pp. 322-333; Sperelakis, N., Gibbs-Donnan equilibrium potentials (2001) Cell Physiology Sourcebook, pp. 243-247. , Academic Press, San Diego, N. Sperelakis (Ed.); Stout, R.G., Griffing, L.R., Plant cell physiology (2001) Cell Physiology Sourcebook, pp. 1079-1095. , Academic Press, San Diego, N. Sperelakis (Ed.); Sze, H., Li, X., Palmgen, M.G., Energization of plant cell membranes by H +-pumping ATPases: regulation and biosynthesis (1999) Plant Cell, 11, pp. 677-689; Tabb, J.S., Kish, P.E., Van Dyke, R., Ueda, T., Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient and intravesicular pH (1992) J. Biol. Chem., 267 (22), pp. 15412-15418; Wagner, C.A., Finberg, K.E., Brenton, S., Marshansky, V., Brown, D., Geibel, J.P., Renal vacuolar H +-ATPase (2004) Physiol. Rev., 84, pp. 1263-1314; Weber, J., Senior, A.E., ATP synthesis driven by proton transport in F1F0-ATP synthase (2003) FEBS Lett., 545 (1), pp. 61-70; Wilson, K.L., Dawson, S.C., Functional evolution of nuclear structure (2011) J. Cell Biol., 195 (2), pp. 171-181; Wolosker, H., de Souza, D.O., de Meis, L., Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient (1996) J. Biol. Chem., 271 (20), pp. 11726-11731; Yokoyama, K., Muneyuki, E., Amano, T., Mizutani, S., Yoshida, M., Ishida, M., Ohkuma, S., V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP (1998) J. Biol. Chem., 273 (32), pp. 20504-20510. , Issue 7; Zenisek, D., Steyer, J.A., Almers, W., Transport, capture and exocytosis of single synaptic vesicles at active zones (2000) Nature, 406, pp. 849-854 |