Mechanisms and models of the active transport of ions and the transformation of energy in intracellular compartments / Melkikh A.V., Seleznev V.D. // Progress in Biophysics and Molecular Biology. - 2012. - V. 109, l. 1-2. - P. 33-57.

ISSN:
00796107
Type:
Review
Abstract:
Various transport models and mechanisms for ions from different compartments of the cell are considered. Compartments such as mitochondria, synaptic vesicles, sarco- and endoplasmic reticulum and vacuoles are considered. It is shown that an adequate description of the compartment-based substance transport can be developed using thermodynamically correct models. Such models are used to calculate both the concentrations of ions in such compartments and the resting potential on their membranes. The problem of the complexity of transport systems is also discussed. © 2012 Elsevier Ltd.
Author keywords:
Active transport; Difference of chemical potentials; Exchangers; Intracellular compartments; Non-equilibrium thermodynamics; Resting potential
Index keywords:
ion; active transport; biological model; cell compartmentalization; cell membrane potential; computer simulation; energy metabolism; intracellular membrane; kinetics; metabolism; physiology; review; t
DOI:
10.1016/j.pbiomolbio.2012.04.0
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861763977&doi=10.1016%2fj.pbiomolbio.2012.04.008&partnerID=40&md5=c2c0ac700c869308c3a52738f134c13c
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861763977&doi=10.1016%2fj.pbiomolbio.2012.04.008&partnerID=40&md5=c2c0ac700c869308c3a52738f134c13c
Affiliations Ural Federal University, Mira str, 19, 620002 Yekaterinburg, Russian Federation
Author Keywords Active transport; Difference of chemical potentials; Exchangers; Intracellular compartments; Non-equilibrium thermodynamics; Resting potential
Chemicals/CAS Ions
References Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2002) Molecular Biology of the Cell, , Garland Science, New York; Allen, T.D., Gronshow, J.M., Bagley, S., Kiseleva, E., Goldberg, M.W., The nuclear pore complex: mediator of translocation between nucleus and cytoplasm (2000) J. Cell. Sci., 113, pp. 1651-1659; Beard, D.A., A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation (2005) PLoS Comput. Biol., 1 (4), pp. e36. , 0252-0264; Beard, D.A., Qian, H., Relationship between thermodynamic driving force and one-way fluxes in reversible processes (2007) PLoS ONE, 2 (1), pp. e144; Beard, D.A., Qian, H., (2008) Chemical Biophysics. Quantitative Analysis of Cellular Systems, , Cambridge University Press, Cambridge; Berezovsky, I.N., Trifonov, E.N., Loop fold structure of proteins: resolution of Levinthal's paradox (2002) J. Biomolec. Str. Dyn., 20, pp. 5-6; Bose, S., French, S., Evans, F.J., Joubert, F., Balaban, R.S., Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate (2003) J. Biol. Chem., 278, pp. 39155-39165; Caplan, S.R., Essig, A., (1983) Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State, , Harvard, Cambridge, MA; Davis, L.J., The nuclear pore complex (1995) Ann. Rev. Biochem., 64, pp. 865-896; Davies, J.M., Hunt, J., Sanders, D., Vacuolar H +-pumping ATP-ase variable transport coupling ratio controlled by pH (1994) PNAS, 91, pp. 8547-8551; Dellen, B.K., Barber, M.J., Risting, M.L., Hescheler, J., Sauer, H., Wartenberg, M., [Ca 2+]-oscillations in a model of energy-dependent Ca 2+ uptake by the endoplasmic reticulum (2005) J. Theor. Biol., 237, pp. 279-290; Drozdowicz, Y.M., Rea, P.A., Valuolar H + pyrophosphatases: from the evolutionary backwaters into the mainstream (2001) Trends Plant Sci., 6 (5), pp. 206-211; Duchen, M.R., Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signaling and cell death (1999) J. Physiol., 516 (1), pp. 1-17; Gidon, S., Sihra, T., Characterization of a H +-ATPase in rat brain synaptic vesicles. Coupling to l-glutamate transport (1989) J. Biol. Chem., 264 (14), pp. 8281-8288; Glass, J.I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M.R., Maruf, M., Hutchison, C.A., Craig Venter, J., Essential genes of a minimal bacterium (2006) PNAS, 103 (2), pp. 425-430; Grabe, M., Wang, H., Oster, G., The mechanochemistry of V-ATPase proton pumps (2000) Biophys. J., 78, pp. 2798-2813; Grabe, M., Oster, J., Regulation of organelle acidity (2001) J. Gen. Physiol., 117, pp. 329-343; De Groot, S.R., Mazur, P., (1962) Non-equilibrium Thermodynamics, , North Holland, Amsterdam; Gunter, T., Pfeiffer, D., Mechanism by which mitochondria transport calcium (1990) Am. J. Physiol., 258 (27), pp. 755-786; Harada, K., Matsuoka, H., Nakamura, J., Fukuda, M., Inoue, M., Storage of GABA in chromaffin granules and not in synaptic-like microvesicles in rat adrenal medullary cells (2010) J. Neurochem., 114, pp. 617-626; Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., Plant cellular and molecular responses to high salinity (2000) Ann. Rev. Plant Physiol. Plant Mol. Biol., 51, pp. 463-499; Kjelstrup, S., Rubi, J.M., Bedeaux, D., Active transport: a kinetic description based on thermodynamic grounds (2005) J. Theor. Biol., 234 (1), pp. 7-12; Kundu, M., Thompson, C.B., Autophagy: basic principles and Relevance to Disease (2008) Ann. Rev. Pathol. Mech. Dis., 3, pp. 427-455; Lachamp, P., Crest, M., Kessler, J.-P., Vesicular glutamate transporters type 1 and 2 expressions in axon terminals of the rat nucleus of the solitary tract (2006) Neuroscience, 137, pp. 73-81; Lee, M.C.S., Miller, E.A., Goldberg, J., Orci, L., Schekman, R., Bi-directorial protein transport between ER and Golgi (2004) Ann. Rev. Cell. Dev. Biol., 20, pp. 87-123; Lowe, A.R., Siegel, J.J., Kalab, P., Siu, M., Weis, K., Liphardt, J.T., Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking (2000) Nature, 467, pp. 600-603; Magnus, G., Keizer, J., Minimal model of β-cell mitochondrial Ca +2 handling (1997) Am. J. Physiol., 273, pp. 717-733; Magnus, G., Keizer, J., Model of β-cell mitochondrial calcium handling and electrical activity. II Mitochondrial variables (1998) Am. J. Physiol., 274, pp. 1174-1184; Marhl, M., Schuster, S., Brumen, M., Heinrich, R., Modelling oscillations of calcium and endoplasmic reticulum transmembrane potential. Role of the signaling and buffering proteins and of the size Ca 2+ sequestering ER subcompartments (1998) Biol. Chem. Bioenerg., 46, pp. 79-90; Meissner, G., Ca 2+ release from sarcoplasmic reticulum (2001) Cell Physiology Sourcebook, pp. 927-940. , Academic Press, San Diego, N. Sperelakis (Ed.); Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 324 (3), pp. 403-412; Melkikh, A.V., Seleznev, V.D., Requirements on models and models of active transport of ions in biomembranes (2006) Bull. Math. Biol., 68 (2), pp. 385-399; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions (2006) J. Theor. Biol., 242 (3), pp. 617-626; Melkikh, A.V., Seleznev, V.D., Models of active transport of neurotransmitters in synaptic vesicles (2007) J. Theor. Biol., 248 (2), pp. 350-353; Melkikh, A.V., Seleznev, V.D., Nonequilibrium statistical model of active transport of ions and ATP production in mitochondria (2007) J. Biol. Phys., 33 (2), pp. 161-170; Melkikh, A.V., Sutormina, M.I., Model of active transport of ions in cardiac cell (2008) J. Theor. Biol., 252, pp. 247-254; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in archaea cells (2009) Bull. Math. Biol., 71 (2), pp. 383-398; Melkikh, A.V., Sutormina, M.I., Algorithms for optimization of the transport system in living and artificial cells (2011) Syst. Synth. Biol., 5 (1-2), pp. 87-96; Murtas, G., Question 7: construction of a semi-synthetic minimal cell: a model for early living cells (2007) Orig. Life Evol. Biosph., 37 (4-5), pp. 419-422; Nakamoto, R.K., Baylis Scanlon, J.A., Al-Shawi, M.K., The rotary mechanism of the ATP synthase (2008) Arch. Biochem. Biophys., 476, pp. 43-50; Nicholls, D.G., (1982) Bioenergetics and Introduction to the Chemiosmotic Theory, , Academic Press, London, New York, San Diego; Nicholls, J.G., Martin, A.R., Wallace, B.G., Fuchs, P.A., (2001) From Neuron to Brain, , Sinauer Assosiates inc; Oster, G.F., Perelson, A.S., Katchalsky, A., Network thermodynamics: dynamic modelling of biophysical systems (1973) Q. Rev. Biophys., 6 (1), pp. 1-134; Oster, G., Wang, H., Why is the efficiency of the F1 ATPase so high? (2000) J. Bioenerg. Biomembr., 32, pp. 459-469; Oster, G., Wang, H., Rotary protein motors (2003) Trends Cell Biol., 13 (3), pp. 114-121; Pokhilko, A.V., Ataullakhanov, F.I., Holmuhamedov, E.L., Mathematical model of mitochondrial ionic homeostasis: three modes of Ca 2+ transport (2006) J. Theor. Biol., 243 (1), pp. 152-169; Roz, N., Rehavi, M., Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane (2003) Life Sci., 73, pp. 461-470; Rybak, S., Lanni, F., Murphy, R., Theoretical considerations on the role of membrane potential in the regulation of endosomal pH (1997) Biophys. J., 73, pp. 674-687; Ryan, K.L., Wente, S.R., The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm (2000) Curr. Opin. Cell. Biol., 12, pp. 361-371; Santos, T.G., Souza, D.O., Tasca, C.I., GTP uptake into rat brainsynaptic vesicles (2006) Brain Res., 1070, pp. 71-76; Serrano, R., Rodriguez-Navarro, A., Ion homeostasis during salt stress in plants (2001) Curr. Opin. Cell Biol., 13, pp. 399-404; Shannon, T.R., Chu, G., Kranias, E.G., Bers, D.M., Phospholamban decrease the energetic efficiency of the sarcoplasmic reticulum Ca pump (2001) J. Biol. Chem., 276 (10), pp. 7195-7201; Shannon, T.R., Ginzburg, K.S., Bers, D.M., Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes (2000) Biophys. J., 78, pp. 322-333; Sperelakis, N., Gibbs-Donnan equilibrium potentials (2001) Cell Physiology Sourcebook, pp. 243-247. , Academic Press, San Diego, N. Sperelakis (Ed.); Stout, R.G., Griffing, L.R., Plant cell physiology (2001) Cell Physiology Sourcebook, pp. 1079-1095. , Academic Press, San Diego, N. Sperelakis (Ed.); Sze, H., Li, X., Palmgen, M.G., Energization of plant cell membranes by H +-pumping ATPases: regulation and biosynthesis (1999) Plant Cell, 11, pp. 677-689; Tabb, J.S., Kish, P.E., Van Dyke, R., Ueda, T., Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient and intravesicular pH (1992) J. Biol. Chem., 267 (22), pp. 15412-15418; Wagner, C.A., Finberg, K.E., Brenton, S., Marshansky, V., Brown, D., Geibel, J.P., Renal vacuolar H +-ATPase (2004) Physiol. Rev., 84, pp. 1263-1314; Weber, J., Senior, A.E., ATP synthesis driven by proton transport in F1F0-ATP synthase (2003) FEBS Lett., 545 (1), pp. 61-70; Wilson, K.L., Dawson, S.C., Functional evolution of nuclear structure (2011) J. Cell Biol., 195 (2), pp. 171-181; Wolosker, H., de Souza, D.O., de Meis, L., Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient (1996) J. Biol. Chem., 271 (20), pp. 11726-11731; Yokoyama, K., Muneyuki, E., Amano, T., Mizutani, S., Yoshida, M., Ishida, M., Ohkuma, S., V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP (1998) J. Biol. Chem., 273 (32), pp. 20504-20510. , Issue 7; Zenisek, D., Steyer, J.A., Almers, W., Transport, capture and exocytosis of single synaptic vesicles at active zones (2000) Nature, 406, pp. 849-854
Correspondence Address Melkikh, A.V.; Ural Federal University, Mira str, 19, 620002 Yekaterinburg, Russian Federation; email: melkikh2008@rambler.ru
CODEN PBIMA
PubMed ID 22579661
Language of Original Document English
Abbreviated Source Title Prog. Biophys. Mol. Biol.
Source Scopus