Model of active transport of ions in archaea cells / Melkikh A.V., Seleznev V.D. // Bulletin of Mathematical Biology. - 2009. - V. 71, l. 2. - P. 383-398.

ISSN:
00928240
Type:
Article
Abstract:
A mathematical model of the active transport of main ions in cells of archaebacteria has been constructed. A set of equations has been developed and solved for ion fluxes through the bacterium membrane. The model is based on the principle "one ion-one transport system." Considering experimental data, the major transport mechanism was determined for each ion and the balance equation was written on the basis of this mechanism in the stationary state. This allowed calculating values of the membrane potential and intracellular concentrations of the ions independently. The calculated values of the intracellular concentrations and resting potential are in qualitative agreement with the corresponding experimental values for cells of extremely halophilic archaea. © 2008 Society for Mathematical Biology.
Author keywords:
Active transport of ions; Halophilic archaea; Intracellular concentrations of ions; Mathematical model; Resting potential
Index keywords:
active transport; Archaebacterium; article; biological model; cell membrane permeability; cell membrane potential; cytoplasm; ion transport; metabolism; microbiology; physiology; Archaea; Biological T
DOI:
10.1007/s11538-008-9366-6
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-58349117009&doi=10.1007%2fs11538-008-9366-6&partnerID=40&md5=a6552a31c6933d262cfcdbfd37def0f0
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-58349117009&doi=10.1007%2fs11538-008-9366-6&partnerID=40&md5=a6552a31c6933d262cfcdbfd37def0f0
Affiliations Ural State Technical University, Mira str. 19, Yekaterinburg 620002, Russian Federation
Author Keywords Active transport of ions; Halophilic archaea; Intracellular concentrations of ions; Mathematical model; Resting potential
References Alcamo, I.E., (2001) Fundamentals of Microbiology, , 6 Benjamin Cumming Menlo Park; Bakker, E.P., Rottenberg, H., Caplan, S.R., An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium (1976) Biochim. Biophys. Acta, 440, pp. 557-572; Bara, M., Guiet-Bara, A., Durlach, J., Regulation of sodium and potassium pathways by magnesium in cell membranes (1993) Magnes. Res., 6, pp. 167-177; Bogomolni, R.A., Light energy conservation processes in Halobacterium halobium cells (1977) Fed. Proc. Fed. Am. Soc. Exp. Biol., 36, pp. 1833-1839; Borrelly, G., Boyer, J.C., Touraine, B., The yeast mutant vps5 affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 9660-9665; Detkova, E.N., Pusheva, M.A., Energy metabolism in halophilic and alkaliphilic acetogenic bacteria (2006) Microbiology, 75, pp. 5-17. , 1; Goldman, D.E., Potential, impedance, and rectification in membrane (1943) J. Gen. Physiol., 27, pp. 37-60; Hodgkin, A.L., Katz, B., The effect on sodium ions in electrical activity of the giant axon of the squid (1949) J. Physiol. (Lond.), 108, pp. 37-77; Kjelstrup, S., Rubi, J.M., Bedeaux, D., Active transport: A kinetic description based on thermodynamic grounds (2005) J. Theor. Biol., 234, pp. 7-12; Lanyi, J.K., Light energy conversion in Halobacterium halobium (1978) Microbiol. Rev., 42, pp. 682-706. , 4; Lengeler, J., Drews, G., Schlegel, H., (1999) Biology of the Prokatyotes, , Blackwell Oxford; Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 234, pp. 403-412. , 3; Melkikh, A.V., Seleznev, V.D., Requirements on models and models of active transport of ions in biomembranes (2006) Bull. Math. Biol., 68, pp. 385-399. , 2; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions (2006) J. Theor. Biol., 242, pp. 617-626. , 3; Melkikh, A.V., Seleznev, V.D., Models of active transport of neurotransmitters in synaptic vesicles (2007) J. Theor. Biol., 248, pp. 350-353. , 2; Michel, H., Oesterhelt, D., Light-induced changes of the gradient and the membrane potential in H. halobium (1976) FEBS. Lett., 65, pp. 175-178; Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Dassarma, S., Genome sequence of Halobacterium species NRC-1 (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 12176-12181. , 22; Oren, A., Bioenergetic aspects of halophilism (1999) Microbiol. Mol. Biol. Rev., 63, pp. 334-348; Schafer, G., Engelhard, M., Muller, V., Bioenergetics of the archaea (1999) Microbiol. Mol. Biol. Rev., 63, pp. 570-620. , 3; Smirnov, A.V., Suzina, N.E., Kulakovskaya, T.V., Kulaev, I.S., Magnesium orthophosphate, a new form of reserve phosphate in the halophilic archaeon Halobacterium salinarium (2002) Microbiology, 71, pp. 786-793. , 6; Tortora, G.J., Funke, B.R., Case, C.L., (2003) Microbiology: An Introduction, , 8 Benjamin-Cummings Redwood City 827 p; Wagner, C.A., Finberg, K.E., Breton, S., Marshansky, V., Brown, D., Geibel, J., Renal vacuolar H+-ATPase (2004) Physiol. Rev., 84, pp. 1263-1314
Correspondence Address Melkikh, A. V.; Ural State Technical University, Mira str. 19, Yekaterinburg 620002, Russian Federation; email: mav@dpt.ustu.ru
CODEN BMTBA
PubMed ID 18956233
Language of Original Document English
Abbreviated Source Title Bull. Math. Biol.
Source Scopus