References |
Alcamo, I.E., (2001) Fundamentals of Microbiology, , 6 Benjamin Cumming Menlo Park; Bakker, E.P., Rottenberg, H., Caplan, S.R., An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium (1976) Biochim. Biophys. Acta, 440, pp. 557-572; Bara, M., Guiet-Bara, A., Durlach, J., Regulation of sodium and potassium pathways by magnesium in cell membranes (1993) Magnes. Res., 6, pp. 167-177; Bogomolni, R.A., Light energy conservation processes in Halobacterium halobium cells (1977) Fed. Proc. Fed. Am. Soc. Exp. Biol., 36, pp. 1833-1839; Borrelly, G., Boyer, J.C., Touraine, B., The yeast mutant vps5 affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 9660-9665; Detkova, E.N., Pusheva, M.A., Energy metabolism in halophilic and alkaliphilic acetogenic bacteria (2006) Microbiology, 75, pp. 5-17. , 1; Goldman, D.E., Potential, impedance, and rectification in membrane (1943) J. Gen. Physiol., 27, pp. 37-60; Hodgkin, A.L., Katz, B., The effect on sodium ions in electrical activity of the giant axon of the squid (1949) J. Physiol. (Lond.), 108, pp. 37-77; Kjelstrup, S., Rubi, J.M., Bedeaux, D., Active transport: A kinetic description based on thermodynamic grounds (2005) J. Theor. Biol., 234, pp. 7-12; Lanyi, J.K., Light energy conversion in Halobacterium halobium (1978) Microbiol. Rev., 42, pp. 682-706. , 4; Lengeler, J., Drews, G., Schlegel, H., (1999) Biology of the Prokatyotes, , Blackwell Oxford; Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 234, pp. 403-412. , 3; Melkikh, A.V., Seleznev, V.D., Requirements on models and models of active transport of ions in biomembranes (2006) Bull. Math. Biol., 68, pp. 385-399. , 2; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions (2006) J. Theor. Biol., 242, pp. 617-626. , 3; Melkikh, A.V., Seleznev, V.D., Models of active transport of neurotransmitters in synaptic vesicles (2007) J. Theor. Biol., 248, pp. 350-353. , 2; Michel, H., Oesterhelt, D., Light-induced changes of the gradient and the membrane potential in H. halobium (1976) FEBS. Lett., 65, pp. 175-178; Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Dassarma, S., Genome sequence of Halobacterium species NRC-1 (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 12176-12181. , 22; Oren, A., Bioenergetic aspects of halophilism (1999) Microbiol. Mol. Biol. Rev., 63, pp. 334-348; Schafer, G., Engelhard, M., Muller, V., Bioenergetics of the archaea (1999) Microbiol. Mol. Biol. Rev., 63, pp. 570-620. , 3; Smirnov, A.V., Suzina, N.E., Kulakovskaya, T.V., Kulaev, I.S., Magnesium orthophosphate, a new form of reserve phosphate in the halophilic archaeon Halobacterium salinarium (2002) Microbiology, 71, pp. 786-793. , 6; Tortora, G.J., Funke, B.R., Case, C.L., (2003) Microbiology: An Introduction, , 8 Benjamin-Cummings Redwood City 827 p; Wagner, C.A., Finberg, K.E., Breton, S., Marshansky, V., Brown, D., Geibel, J., Renal vacuolar H+-ATPase (2004) Physiol. Rev., 84, pp. 1263-1314 |