Models of active transport of neurotransmitters in synaptic vesicles / Melkikh A.V., Seleznev V.D. // Journal of Theoretical Biology. - 2007. - V. 248, l. 2. - P. 350-353.

ISSN:
00225193
Type:
Article
Abstract:
Models of the active transport of neurotransmitters in synaptic vesicles were constructed. The models were used to determine the resting potential at membranes of synaptic vesicles: 40 mV (monoamines and acetylcholine) and -40 mV (glutamate). The potential at the membrane of a synaptic vesicle was almost absent for the transport of GABA and glycine. The neurotransmitter concentration of a cell was 0.1-18 mM at the concentration of neurotransmitters in a vesicle equal to 0.5 M. This result is in qualitative agreement with the relevant experimental data. © 2007 Elsevier Ltd. All rights reserved.
Author keywords:
Active transport of neurotransmitters; Resting potential; Synaptic vesicles
Index keywords:
4 aminobutyric acid; acetylcholine; glutamic acid; glycine; monoamine; neurotransmitter; amino acid; data set; experimental study; model; morphology; article; GABAergic transmission; ion transport; ma
DOI:
10.1016/j.jtbi.2007.05.022
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34548009869&doi=10.1016%2fj.jtbi.2007.05.022&partnerID=40&md5=24050b020d072dddd7e9fbdd85cfa5b8
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-34548009869&doi=10.1016%2fj.jtbi.2007.05.022&partnerID=40&md5=24050b020d072dddd7e9fbdd85cfa5b8
Affiliations Ural State Technical University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
Author Keywords Active transport of neurotransmitters; Resting potential; Synaptic vesicles
Chemicals/CAS 4 aminobutyric acid, 28805-76-7, 56-12-2; acetylcholine, 51-84-3, 60-31-1, 66-23-9; glutamic acid, 11070-68-1, 138-15-8, 56-86-0, 6899-05-4; glycine, 56-40-6, 6000-43-7, 6000-44-8; Neurotransmitter Agents
References Gidon, S., Sihra, T., Characterization of a H+-ATPase in rat brain synaptic vesicles. Coupling to l-glutamate transport (1989) J. Biol. Chem., 264 (14), pp. 8281-8288; Lachamp, P., Crest, M., Kessler, J.-P., Vesicular glutamate transporters type 1 and 2 expressions in axon terminals of the rat nucleus of the solitary tract (2006) Neuroscience, 137, pp. 73-81; Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 324 (3), pp. 403-412; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in biomembranes based on ATP-dependent change of height of diffusion barriers to ions (2006) J. Theor. Biol., 242 (3), pp. 617-626; Melkikh, A.V., Seleznev, V.D., Requirements on models and models of active transport of ions in biomembranes (2006) Bull. Math. Biol., 68 (2), pp. 385-399; Nicholls, J.G., Martin, A.R., Wallace, B.G., Fuchs, P.A., (2001) From Neuron to Brain. fourth ed, , Sinauer Assosiates Inc; Roz, N., Rehavi, M., Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane (2003) Life Sci., 73, pp. 461-470; Santos, T.G., Souza, D.O., Tasca, C.I., GTP uptake into rat brainsynaptic vesicles (2006) Brain Res., 1070, pp. 71-76; Tabb, J.S., Kish, P.E., Van Dyke, R., Ueda, T., Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient and intravesicular pH (1992) J. Biol. Chem., 267 (22), pp. 15412-15418; Wagner, C.A., Finberg, K.E., Brenton, S., Marshansky, V., Brown, D., Geibel, J.P., Renal vacuolar H+-ATPase (2004) Physiol. Rev., 84, pp. 1263-1314; Wolosker, H., de Souza, D.O., de Meis, L., Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient (1996) J. Biol. Chem., 271 (20), pp. 11726-11731
Correspondence Address Melkikh, A.V.; Ural State Technical University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation; email: mav@dpt.ustu.ru
CODEN JTBIA
PubMed ID 17583751
Language of Original Document English
Abbreviated Source Title J. Theor. Biol.
Source Scopus