Nonequilibrium statistical model of active transport of ions and ATP production in mitochondria / Melkikh A.V., Seleznev V.D. // Journal of Biological Physics. - 2007. - V. 33, l. 2. - P. 161-170.

ISSN:
00920606
Type:
Article
Abstract:
A model of the active transport of ions through internal membranes of mitochondria is proposed. If concentrations of ions in a cell are known, this model allows calculating concentrations of all main ions (H+, Ca +2, K+, Mg2+, Na+, Cl-) in the mitochondrion matrix and the resting potential across the membrane. The theoretical values satisfactorily agree with available experimental data on the concentrations and the potentials, including different operating regimes of the adenosine triphosphate (ATP) synthetase (the main regime, short circuiting or ATP synthetase blocking). The active transport of Mg2+ ions in exchange for protons was assumed. In accordance with the model, the ATP synthetase operation is possible only if the stoichiometric coefficient of protons is 3. © 2008 Springer Science+Business Media B.V.
Author keywords:
Active transport of ions; ATP production; Mathematical model; Mitochondria; Resting potential
Index keywords:
adenosine triphosphate; calcium; chloride; hydrogen; magnesium; potassium; proton transporting adenosine triphosphate synthase; sodium; active transport; article; ion transport; mitochondrion; priorit
DOI:
10.1007/s10867-007-9053-0
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-40149090783&doi=10.1007%2fs10867-007-9053-0&partnerID=40&md5=e81420d458a73105024e65add52bd559
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-40149090783&doi=10.1007%2fs10867-007-9053-0&partnerID=40&md5=e81420d458a73105024e65add52bd559
Affiliations Ural State Technical University, Yekaterinburg, Russian Federation
Author Keywords Active transport of ions; ATP production; Mathematical model; Mitochondria; Resting potential
Chemicals/CAS adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; calcium, 7440-70-2; chloride, 16887-00-6; hydrogen, 12385-13-6, 1333-74-0; magnesium, 7439-95-4; potassium, 7440-09-7; proton transporting adenosine triphosphate synthase, 37205-63-3; sodium, 7440-23-5
References Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 324, pp. 403-412. , 3; Melkikh, A.V., Seleznev, V.D., Requirements on models and models of active transport of ions in biomembranes (2006) Bull. Math. Biol., 68, pp. 385-399. , 2; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions (2006) J. Theor. Biol., 242, pp. 617-626. , 3; Hilko, A.V., Ataullakhanov, F.I., Holmuhamedov, E.L., Mathematical model of mitochondrial ionic homeostasis: Three modes of Ca2+ transport (2006) J. Theor. Biol., 243, pp. 152-169. , 1; Bertram, R., Pedersen, M.G., Luciani, D.S., Sherman, A., A simplified model for mitochondrial ATP production (2006) J. Theor. Biol., 243, pp. 575-586. , 4; Magnus, G., Keizer, J., Minimal model of β-cell mitochondrial Ca+2 handling (1997) Am. J. Physiol., 273, pp. 717-733; Selivanov, V.A., Ichas, F., Holmuhamedov, E.L., Jouaville, L.S., Evtodienko, Y.V., Mazat, J.P., A model of mitochondrial Ca2+-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria (1998) Biophys. Chem., 72, pp. 111-121; Lemeshko, V.V., Model of the outer membrane potential generation by the inner membrane of mitochondria (2002) Biophys. J., 82, pp. 684-692; Nicholls, D.G., (1982) Bioenergetics and Introduction to the Chemiosmotic Theory, , Academic New York; Garlid, K.D., Sperelakis, N., Physiology of mitochondria (2001) Cell Physiology Sourcebook, pp. 139-151. , 3 Academic Press San Diego; Kitano, H., Biological robustness (2004) Nature, 5, pp. 826-837; Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., Doyle, J., Robustness of cellular functions (2004) Cell, 118, pp. 675-685; Bernardi, P., Mitochondrial transport of cations: Channels, exchangers, and permeability transition (1999) Phys. Rev., 79, pp. 1127-1155. , 4; Berridge, M.J., Bootman, M.D., Roderick, H.L., Calcium signaling: Dynamics, homeostasis and remodeling (2003) Nat. Rev. Mol. Cell Biol., 4, pp. 517-529; Duchen, M.R., Contributions of mitochondria to animal physiology: From homeostatic sensor to calcium signaling and cell death (1999) J. Physiol., 516, pp. 1-17. , Part 1; Kroemer, G., Martin, S.L., Caspase-independent cell death (2005) Nat. Med., 11, pp. 725-730; Bowser, D.N., Petrou, S., Panchal, R.G., Smart, M.L., Williams, D.A., Release of mitochondria Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake (2002) FASEB J., 16, pp. 1105-1107; Lin, X., Varnai, P., Csordas, G., Balla, A., Nagai, T., Miyawaki, A., Balla, T., Hajnoszky, G., Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisphosphate-binding proteins (2005) J. Biol. Chem., 280, pp. 12820-12832; Jung, D.W., Brierly, G.P., Matrix free Mg2+ and the regulation of mitochondrial volume (1999) Am. J. Physiol. Cell Physiol., 277, pp. 1194-1201; Murphy, E., Mysteries of magnesium homeostasis (2000) Circ. Res., 86, pp. 245-248. , 3; Melkikh, A.V., Seleznev, V.D., Models of active transport of neurotransmitters in synaptic vesicles (2007) J. Theor. Biol., 248, pp. 350-353. , 2
Correspondence Address Melkikh, A. V.; Ural State Technical University, Yekaterinburg, Russian Federation; email: mav@dpt.ustu.ru
CODEN JBPHB
Language of Original Document English
Abbreviated Source Title J. Biol. Phys.
Source Scopus