References |
Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 324, pp. 403-412. , 3; Melkikh, A.V., Seleznev, V.D., Requirements on models and models of active transport of ions in biomembranes (2006) Bull. Math. Biol., 68, pp. 385-399. , 2; Melkikh, A.V., Seleznev, V.D., Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions (2006) J. Theor. Biol., 242, pp. 617-626. , 3; Hilko, A.V., Ataullakhanov, F.I., Holmuhamedov, E.L., Mathematical model of mitochondrial ionic homeostasis: Three modes of Ca2+ transport (2006) J. Theor. Biol., 243, pp. 152-169. , 1; Bertram, R., Pedersen, M.G., Luciani, D.S., Sherman, A., A simplified model for mitochondrial ATP production (2006) J. Theor. Biol., 243, pp. 575-586. , 4; Magnus, G., Keizer, J., Minimal model of β-cell mitochondrial Ca+2 handling (1997) Am. J. Physiol., 273, pp. 717-733; Selivanov, V.A., Ichas, F., Holmuhamedov, E.L., Jouaville, L.S., Evtodienko, Y.V., Mazat, J.P., A model of mitochondrial Ca2+-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria (1998) Biophys. Chem., 72, pp. 111-121; Lemeshko, V.V., Model of the outer membrane potential generation by the inner membrane of mitochondria (2002) Biophys. J., 82, pp. 684-692; Nicholls, D.G., (1982) Bioenergetics and Introduction to the Chemiosmotic Theory, , Academic New York; Garlid, K.D., Sperelakis, N., Physiology of mitochondria (2001) Cell Physiology Sourcebook, pp. 139-151. , 3 Academic Press San Diego; Kitano, H., Biological robustness (2004) Nature, 5, pp. 826-837; Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., Doyle, J., Robustness of cellular functions (2004) Cell, 118, pp. 675-685; Bernardi, P., Mitochondrial transport of cations: Channels, exchangers, and permeability transition (1999) Phys. Rev., 79, pp. 1127-1155. , 4; Berridge, M.J., Bootman, M.D., Roderick, H.L., Calcium signaling: Dynamics, homeostasis and remodeling (2003) Nat. Rev. Mol. Cell Biol., 4, pp. 517-529; Duchen, M.R., Contributions of mitochondria to animal physiology: From homeostatic sensor to calcium signaling and cell death (1999) J. Physiol., 516, pp. 1-17. , Part 1; Kroemer, G., Martin, S.L., Caspase-independent cell death (2005) Nat. Med., 11, pp. 725-730; Bowser, D.N., Petrou, S., Panchal, R.G., Smart, M.L., Williams, D.A., Release of mitochondria Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake (2002) FASEB J., 16, pp. 1105-1107; Lin, X., Varnai, P., Csordas, G., Balla, A., Nagai, T., Miyawaki, A., Balla, T., Hajnoszky, G., Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisphosphate-binding proteins (2005) J. Biol. Chem., 280, pp. 12820-12832; Jung, D.W., Brierly, G.P., Matrix free Mg2+ and the regulation of mitochondrial volume (1999) Am. J. Physiol. Cell Physiol., 277, pp. 1194-1201; Murphy, E., Mysteries of magnesium homeostasis (2000) Circ. Res., 86, pp. 245-248. , 3; Melkikh, A.V., Seleznev, V.D., Models of active transport of neurotransmitters in synaptic vesicles (2007) J. Theor. Biol., 248, pp. 350-353. , 2 |