Model of active transport of ions in biomembranes based on ATP-dependent change of height of diffusion barriers to ions / Melkikh A.V., Seleznev V.D. // Journal of Theoretical Biology. - 2006. - V. 242, l. 3. - P. 617-626.

ISSN:
00225193
Type:
Article
Abstract:
A closed model of the active transport was constructed taking into account ATP-dependent opening and closing of barriers to ions and the relationship between the membrane potential and the work of ionic pumps under the condition of electroneutrality inside the cell. The internal consistency of the model was verified by the fulfillment of Onsager's reciprocity relation. It was demonstrated that at the limit of large energy barriers the operation of the system of the active transport is equivalent to the "turning segment" model, which was proposed by the authors earlier. Values of the resting potential and the intracellular concentration of ions were obtained for different types of cells. These results were in qualitative agreement with relevant experimental data. © 2006 Elsevier Ltd. All rights reserved.
Author keywords:
Active transport of ions; ATP-ase; Height of diffusion barrier; Resting potential
Index keywords:
adenosine triphosphate; ion; cell organelle; diffusion; ion exchange; model; phosphate; article; cell type; concentration (parameters); diffusion; energy; intracellular membrane; ion transport; mathem
DOI:
10.1016/j.jtbi.2006.04.011
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747881126&doi=10.1016%2fj.jtbi.2006.04.011&partnerID=40&md5=4315604dfdcf5b8cdc69f8fcbc5ebbcc
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747881126&doi=10.1016%2fj.jtbi.2006.04.011&partnerID=40&md5=4315604dfdcf5b8cdc69f8fcbc5ebbcc
Affiliations Ural State Technical University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
Author Keywords Active transport of ions; ATP-ase; Height of diffusion barrier; Resting potential
Chemicals/CAS adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; Adenosine Triphosphatases, 3.6.1.-; Adenosine Triphosphate, 56-65-5
References Bustamante, S., Keller, D., Oster, G., The physics of molecular motors (2001) Acc. Chem. Res., 34, pp. 412-420; Caplan, S.R., Essig, A., (1983) Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State, , Harvard, Cambridge, MA; De Weer, P., Gadsby, D.C., Rakowski, R.F., Voltage dependence of the apparent affinity for external Na+ of the backward-running sodium pump (2001) J. Gen. Physiol., 117, pp. 315-328; Faber, G.M., Rudy, Y., Action potential and contractility changes in [Na +]i overloaded cardiac myocytes: a simulation study (2000) Biophys. J., 78, pp. 2392-2404; Fahraeus, C., Theander, S., Edman, A., Grampp, W., The K-Cl cotransporter in the lobster stretch receptor neuron-a kinetic analysis (2002) J. Theor. Biol., 217, pp. 287-309. , doi:10.1006/yjtbi.3038; Goldman, D.E., Potential, impedance, and rectification in membrane (1943) J. Gen. Physiol., 27, pp. 37-60; Gordon, L.G.M., Macknight, A.D.C., Application of membrane potential equations to tight epithelia (1991) J. Membrane Biol., 120, pp. 155-163; Gordon, L.G.M., Macknight, A.D.C., Contributions of secondary active transport processes to membrane potential (1991) J. Membrane Biol., 120, pp. 141-154; Hodgkin, A.L., Katz, B., The effect on sodium ions in electrical activity of the giant axon of the squid (1949) J. Physiol. (London), 108, pp. 37-77; Hopfer, U.A., Maxwell's Demon type of membrane transport: possibility for active transport by ABC-transporters (2002) J. Theor. Biol., 214, pp. 539-547. , doi:10.1006/jtbi.2001.2479; Kabakov, A.Y., The resting potential equations incorporating ionic pumps and osmotic concentrations (1994) J. Theor. Biol., 169, pp. 51-64; Kabakov, A.Y., Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches (1998) Biophys. J., 75, pp. 2858-2867; Kedem, O., Katchalsky, A., Thermodynamic analysis of the permeability of biological membranes to non-electrolytes (1958) Biochem. Biophys. Acta, 27, pp. 229-246; Kjelstrup, S., Rubi, J.M., Bedeaux, D., Active transport: a kinetic description based on thermodynamic grounds (2005) J. Theor. Biol., 234 (1), pp. 7-12; Melkikh, A.V., Seleznev, V.D., Nonequilibrium statistical model of an efficient molecular machine performing active ion transport across biological membranes (1998) Biophysics (Biofizika), 43 (3), pp. 449-453; Melkikh, A.V., Seleznev, V.D., Mechanism of the generation of electric potential difference across the cell membrane (1999) Biophysics (Biofizika), 44 (3), pp. 467-471; Melkikh, A.V., Seleznev, V.D., Model of the electric potential across the cell membrane during the transfer of several ions by the active transport system (2001) Biophysics (Biofizika), 46 (2), pp. 271-275; Melkikh, A.V., Seleznev, V.D., Models of active transport of ions in biomembranes of various types of cells (2005) J. Theor. Biol., 324 (3), pp. 403-412; Oster, G., Wang, H., Why is the efficiency of the F1 ATPase so high? (2000) J. Bioen. Biomembr., 32, pp. 459-469; Oster, G., Wang, H., Rotary protein motors (2003) Trends Cell Biol., 13 (3), pp. 114-121; Sagar, A., Rakowski, R.F., Access channel model for the voltage dependence of the forward-running Na+/K+ pump (1994) J. Gen. Physiol., 103, pp. 869-894; Tsong, T.Y., Chang, C.H., Ion pump as Brownian motor: theory of electroconformational coupling and proof of ratchet mechanism for Na-K-ATPase action (2003) Physica A., 321 (1-2), pp. 124-138
Correspondence Address Melkikh, A.V.; Ural State Technical University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation; email: mav@dpt.ustu.ru
CODEN JTBIA
PubMed ID 16750835
Language of Original Document English
Abbreviated Source Title J. Theor. Biol.
Source Scopus