References |
Bustamante, S., Keller, D., Oster, G., The physics of molecular motors (2001) Acc. Chem. Res., 34, pp. 412-420; Caplan, S.R., Essig, A., (1983) Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State, , Harvard University Press, Cambridge, MA; De Groot, S.R., Mazur, P., (1962) Non-Equilibrium Thermodynamics, , North-Holland, Amsterdam; De Weer, P., Gadsby, D.C., Rakowski, R.F., Voltage dependence of the apparent affinity for external Na+ of the backward-running sodium pump (2001) J. Gen. Physiol., 117, pp. 315-328; Faber, G.M., Rudy, Y., Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: A simulation study (2000) Biophys. J., 78, pp. 2392-2404; Fahraeus, C., Theander, S., Edman, A., Grampp, W., The K-Cl cotransporter in the lobster stretch receptor neuron - A kinetic analysis (2002) J. Theor. Biol., 217, pp. 287-309. , doi:10.1006/yjtbi.3038; Goldman, D.E., Potential, impedance, and rectification in membrane (1943) J. Gen. Physiol., 27, pp. 37-60; Hodgkin, A.L., Katz, B., The effect on sodium ions in electrical activity of the giant axon of the squid (1949) J. Physiol., 108, pp. 37-77. , Lond; Hodgkin, A.L., Horowicz, P., The influence of potassium and chloride ions on the membrane potential of single muscle fibers (1959) J. Physiol., 148, pp. 127-160; Hopfer, U.A., Maxwell's Demon type of membrane transport: Possibility for active transport by ABC-transporters (2002) J. Theor. Biol., 214, pp. 539-547. , doi:10.1006/jtbi.2001.2479; Kjelstrup, S., Rubi, J.M., Bedeaux, D., Active transport: A kinetic description based on thermodynamic grounds (2005) J. Theor. Biol., 234 (1), pp. 7-12; Kabakov, A.Y., The resting potential equations incorporating ionic pumps and osmotic concentrations (1994) J. Theor. Biol., 169, pp. 51-64; Kabakov, A.Y., Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches (1998) Biophys. J., 75, pp. 2858-2867; Kedem, O., Katchalsky, A., Thermodynamic analysis of the permeability of biological membranes to non-electrolytes (1958) Bioch. Biophys. Acta, 27, pp. 229-246; Melkikh, A.V., Seleznev, V.D., Nonequilibrium statistical model of an efficient molecular machine performing active ion transport across biological membranes (1998) Biophysics (Biofizika), 43 (3), pp. 449-453; Melkikh, A.V., Seleznev, V.D., Mechanism of the generation of electric potential difference across the cell membrane (1999) Biophysics (Biofizika), 44 (3), pp. 467-471; Melkikh, A.V., Seleznev, V.D., Model of the electric potential across the cell membrane during the transfer of several ions by the active transport system (2001) Biophysics (Biofizika), 46 (2), pp. 271-275; Melkikh, A.V., Seleznev, V.D., Models of active transport in biomembranes of various types of cells (2005) J. Theor. Biol., 324 (3), pp. 403-412; Oster, G., Wang, H., Rotary protein motors (2003) Trends Cell Biol., 13 (3), pp. 114-121; Oster, G., Wang, H., Why is the efficiency of the F1 ATPase so high? (2000) J. Bioeneerg. Biomembr., 32, pp. 459-469; Sagar, A., Rakowski, R.F., Access channel model for the voltage dependence of the forward-running Na+/K+ pump (1994) J. Gen. Physiol., 103, pp. 869-894; Sperelakis, N., Origin of resting membrane potential (2001) Cell Physiology Sourcebook, 3rd Ed., pp. 219-236. , Sperelakis, N. (Ed.), Academic Press, San Diego; Tsong, T.Y., Chang, C.H., Ion pump as brownian motor: Theory of electroconformational coupling and proof of ratchet mechanism for Na-K-ATPase action (2003) Physica A, 321 (1-2), pp. 124-138; Volkenstein, M.V., The conformon (1972) J. Theor. Biol., 34, pp. 193-195 |