Requirements on models and models of active transport of ions in biomembranes / Melkikh A.V., Seleznev V.D. // Bulletin of Mathematical Biology. - 2006. - V. 68, l. 2. - P. 385-399.

ISSN:
00928240
Type:
Article
Abstract:
Requirements on models of the active transport of ions in biomembranes have been formulated. The basic requirements include an explicit dependence of the resting potential and intracellular concentrations of ions on the difference of ATP-ADP chemical potentials, a consideration of the reversibility of the ionic pump operation, a correlation between theoretical and experimental data on the resting potential and intracellular concentrations of ions for different types of cells, the pump efficiency approaching 100%, and a tendency of the resting potential to the Donnan potential if the active transport is blocked. A model satisfying the aforementioned requirements has been proposed by the authors as an example. © Society for Mathematical Biology 2006.
Author keywords:
Active transport of ions; Conformon; Resting potential; Reversibility of ionic pumps
Index keywords:
adenosine diphosphate; adenosine triphosphatase; adenosine triphosphate; ion; active transport; algorithm; article; biological model; cell membrane; cell membrane potential; ion transport; metabolism;
DOI:
10.1007/s11538-005-9035-y
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33746594610&doi=10.1007%2fs11538-005-9035-y&partnerID=40&md5=c696f0f296ee4cb5e70616c7139f4798
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-33746594610&doi=10.1007%2fs11538-005-9035-y&partnerID=40&md5=c696f0f296ee4cb5e70616c7139f4798
Affiliations Ural State Technical University, 19 Mira Street, 620002 Ekaterinburg, Russian Federation
Author Keywords Active transport of ions; Conformon; Resting potential; Reversibility of ionic pumps
Chemicals/CAS adenosine diphosphate, 20398-34-9, 58-64-0; adenosine triphosphatase, 37289-25-1, 9000-83-3; adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; Adenosine Diphosphate, 58-64-0; Adenosine Triphosphatases, 3.6.1.-; Adenosine Triphosphate, 56-65-5; Ions
References Bustamante, S., Keller, D., Oster, G., The physics of molecular motors (2001) Acc. Chem. Res., 34, pp. 412-420; Caplan, S.R., Essig, A., (1983) Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State, , Harvard University Press, Cambridge, MA; De Groot, S.R., Mazur, P., (1962) Non-Equilibrium Thermodynamics, , North-Holland, Amsterdam; De Weer, P., Gadsby, D.C., Rakowski, R.F., Voltage dependence of the apparent affinity for external Na+ of the backward-running sodium pump (2001) J. Gen. Physiol., 117, pp. 315-328; Faber, G.M., Rudy, Y., Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: A simulation study (2000) Biophys. J., 78, pp. 2392-2404; Fahraeus, C., Theander, S., Edman, A., Grampp, W., The K-Cl cotransporter in the lobster stretch receptor neuron - A kinetic analysis (2002) J. Theor. Biol., 217, pp. 287-309. , doi:10.1006/yjtbi.3038; Goldman, D.E., Potential, impedance, and rectification in membrane (1943) J. Gen. Physiol., 27, pp. 37-60; Hodgkin, A.L., Katz, B., The effect on sodium ions in electrical activity of the giant axon of the squid (1949) J. Physiol., 108, pp. 37-77. , Lond; Hodgkin, A.L., Horowicz, P., The influence of potassium and chloride ions on the membrane potential of single muscle fibers (1959) J. Physiol., 148, pp. 127-160; Hopfer, U.A., Maxwell's Demon type of membrane transport: Possibility for active transport by ABC-transporters (2002) J. Theor. Biol., 214, pp. 539-547. , doi:10.1006/jtbi.2001.2479; Kjelstrup, S., Rubi, J.M., Bedeaux, D., Active transport: A kinetic description based on thermodynamic grounds (2005) J. Theor. Biol., 234 (1), pp. 7-12; Kabakov, A.Y., The resting potential equations incorporating ionic pumps and osmotic concentrations (1994) J. Theor. Biol., 169, pp. 51-64; Kabakov, A.Y., Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches (1998) Biophys. J., 75, pp. 2858-2867; Kedem, O., Katchalsky, A., Thermodynamic analysis of the permeability of biological membranes to non-electrolytes (1958) Bioch. Biophys. Acta, 27, pp. 229-246; Melkikh, A.V., Seleznev, V.D., Nonequilibrium statistical model of an efficient molecular machine performing active ion transport across biological membranes (1998) Biophysics (Biofizika), 43 (3), pp. 449-453; Melkikh, A.V., Seleznev, V.D., Mechanism of the generation of electric potential difference across the cell membrane (1999) Biophysics (Biofizika), 44 (3), pp. 467-471; Melkikh, A.V., Seleznev, V.D., Model of the electric potential across the cell membrane during the transfer of several ions by the active transport system (2001) Biophysics (Biofizika), 46 (2), pp. 271-275; Melkikh, A.V., Seleznev, V.D., Models of active transport in biomembranes of various types of cells (2005) J. Theor. Biol., 324 (3), pp. 403-412; Oster, G., Wang, H., Rotary protein motors (2003) Trends Cell Biol., 13 (3), pp. 114-121; Oster, G., Wang, H., Why is the efficiency of the F1 ATPase so high? (2000) J. Bioeneerg. Biomembr., 32, pp. 459-469; Sagar, A., Rakowski, R.F., Access channel model for the voltage dependence of the forward-running Na+/K+ pump (1994) J. Gen. Physiol., 103, pp. 869-894; Sperelakis, N., Origin of resting membrane potential (2001) Cell Physiology Sourcebook, 3rd Ed., pp. 219-236. , Sperelakis, N. (Ed.), Academic Press, San Diego; Tsong, T.Y., Chang, C.H., Ion pump as brownian motor: Theory of electroconformational coupling and proof of ratchet mechanism for Na-K-ATPase action (2003) Physica A, 321 (1-2), pp. 124-138; Volkenstein, M.V., The conformon (1972) J. Theor. Biol., 34, pp. 193-195
Correspondence Address Melkikh, A.V.; Ural State Technical University, 19 Mira Street, 620002 Ekaterinburg, Russian Federation; email: mav@dpt.ustu.ru
CODEN BMTBA
PubMed ID 16794936
Language of Original Document English
Abbreviated Source Title Bull. Math. Biol.
Source Scopus