Corrosion of Austenitic Stainless Steels in Chloride Melts / Abramov A.V., Polovov I.B., Volkovich V.A., Rebrin O.I. // Molten Salts Chemistry and Technology. - 2014. - V. , l. . - P. 427-448.

ISSN:
нет данных
Type:
Book Chapter
Abstract:
The corrosion behavior of AISI 316L, 316Ti, and 321 austenitic stainless steels was studied in melts based on a NaCl-KCl equimolar mixture at 750°C employing spectroscopic, gravimetric and electrochemical methods in addition to chemical and microscopic analysis. Iron, chromium and manganese species constitute the major corrosion products. Extended corrosion tests resulted in increasing chromium to iron ratio in the melt. Titanium in steels forms very stable carbonitride species that are not dissolved even during anodic oxidation. After 30h of exposure, intergranular corrosion was noticed for all types of steels. The proposed mechanism of the corrosion of stainless steels in molten chlorides includes the following stages: chemical exchange reaction between the steel components and melt alkali cations, deposition of chromium-containing carbides along the grain boundaries and formation of galvanic pairs between the chromium depleted parts of grains of austenitic alloys and the carbide phases. © 2014 John Wiley & Sons, Ltd.
Author keywords:
Austenitic stainless steels; Chloride melts; Corrosion; Corrosion rates; Electrochemical techniques; Electronic absorption spectroscopy; Intergranular corrosion; Sensitization effect
Index keywords:
нет данных
DOI:
10.1002/9781118448847.ch6e
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926471504&doi=10.1002%2f9781118448847.ch6e&partnerID=40&md5=c485d0c79f28a8fe2255b6dbaf3e793a
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926471504&doi=10.1002%2f9781118448847.ch6e&partnerID=40&md5=c485d0c79f28a8fe2255b6dbaf3e793a
Affiliations Department of Rare Metals and Nanomaterials, Ural Federal University, Russian Federation
Author Keywords Austenitic stainless steels; Chloride melts; Corrosion; Corrosion rates; Electrochemical techniques; Electronic absorption spectroscopy; Intergranular corrosion; Sensitization effect
References Edeleanu, C., Gibson, J.G., Meredith, J.E., Effects of diffusion on corrosion of metals by fused salts (1960) J. Iron. Steel Int, 196 (1), pp. 59-61; Stepanov, S.I., Kachina-Pullo, E.B., Corrosion of steels and nickel-chromium alloys in mixtures of alkali chlorides (in Russian) (1962) Russ. J. Appl. Chem, 35, pp. 1852-1855; Stepanov, S.I., Kachina-Pullo, E.B., Corrosion of several steels and metallic nickel in molten chlorides of sodium and magnesium (in Russian) (1964) Russ. J. Appl. Chem, 37, pp. 379-383; Kochergin, V.P., Putina, O.A., Devyatkin, V.N., Kanaeva, E.T., Corrosion and stationary potentials of St-3 and nickel in molten chlorides of alkali and alkali-earth metals (1975) Zaschita Met. (Prot. Metals), 11 (2), pp. 224-226; Ozeryananya, I.N., Krasil'nikova, N.A., Perin, S.M., The influence of oxygen on the corrosion of 8Kh18N10T steel in molten equimolar mixture of sodium and potassium chlorides (1978) Prot. Met, 14, p. 261; Raleigh, D.O., White, J.T., Ogden, C.A., Anodic corrosion rate measurements in LiCl-KCl eutectic - 2. Results on nickel, molybdenum, and stainless steel (1979) J. Electrochem. Soc, 126 (12), pp. 1093-1099; Atmani, H., Rameau, J.J., Stress corrosion cracking of 304L stainless steel in molten salts media (1984) Corros. Sci, 24 (4), pp. 279-285; Oryshich, I.V., Effect of chromium, aluminum, and titanium on the corrosion resistance of nickel in molten sodium sulfate and chloride (1985) Met. Sci. Heat Treat, 27 (3), pp. 218-222; Oryshich, I.V., Kostyrko, O.S., Influence of molybdenum, tungsten, and cobalt on the corrosion of hightemperature strength nickel alloys in molten salts (1985) Met. Sci. Heat Treat, 27 (10), pp. 740-746; Atmani, H., Rameau, J.J., Interaction entre le fluage et la corrosion electrochimique en milieu de sels fondus: Cas de l'acier inoxydable AISI 304L dans NaCl-CaCl2 fondu à 570 °C (1987) Mater. Sci. Eng, 88, pp. 247-252; Atmani, H., Rameau, J.J., Stress corrosion cracking at constant load of 304L stainless steel in molten NaCl-CaCl2 at 570°C (1987) Corros. Sci, 27 (1), pp. 35-41; Penyagina, O.P., Perin, S.M., Manukhina, T.I., Shamanova, N.D., Corrosion behaviour of 12Kh18N10T steel in chloride and carbonate melts under thermocycling conditions (in Russian) (1994) Rasplavy, 3, pp. 71-76; Shamanova, N.D., Ozeryannaya, I.N., Zyryanov, V.G., Microstructure of surface of chromium steels after interaction with kcl melt (1997) Prot. Met, 33 (3), pp. 276-279; Shamanova, N.D., Esina, N.O., The surface state of chromium- and chromium-nickel steels upon their exposure to a calcium-potassium chloride melt (1999) Prot. Met, 35 (1), pp. 43-46; Abd El-Raman, H.A., Baraka, A., Abd El-Gwad, S.A., Effect of oxide ion donors on the corrosion and dechromization of stainless steels in KCl-NaCl-BaCl2 melt (1999) J. Appl. Electrochem, 29 (10), pp. 1205-1210; Zeng, C.L., Wang, W., Wu, W.T., Electrochemical impedance models for molten salt corrosion (2001) Corros. Sci, 43 (4), pp. 787-801; Yanase, E., Arai, K., Watanabe, I., XAFS analysis of corroded metal surfaces with molten salts by conversion-electron-yield method (2001) J. Synchrotron Radiat, 8 (2), pp. 490-492; Li, Y.S., Niu, Y., Wu, W.T., Accelerated corrosion of pure Fe, Ni, Cr and several Fe-based alloys induced by ZnCl2-KCl at 450 °C in oxidizing environment (2003) Mater. Sci. Eng, A345, pp. 64-71; Mohanty, B.P., Shores, D.A., Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part II: thermochemical model studies (2004) Corros. Sci, 46 (12), pp. 2909-2924; Li, Y.S., Spiegel, M., Shimada, S., Corrosion behaviour of various model alloys with NaCl-KCl coating (2005) Mater. Chem. Phys, 93 (1), pp. 217-223; Lu, W.M., Pan, T.J., Zhang, K., Niu, Y., Accelerated corrosion of five commercial steels under a ZnCl2-KCl deposit in a reducing environment typical of waste gasification at 673-773 K (2008) Corros. Sci, 50 (7), pp. 1900-1906; Gulyaev, A.P., (1966) Metal Science (in Russian), , Metallurgia, Moscow; Sedriks, A.J., (1996) Corrosion of Stainless Steel, , John Wiley & Sons, Inc, New York; Devine, T.M., Mechanism of intergranular corrosion and pitting corrosion of austenitic and duplex 308 stainless steel (1979) J. Electrochem. Soc, 126 (3), pp. 374-385; Hall, E.L., Briant, C.L., Chromium depletion in the vicinity of carbides in sensitized austenitic stainless steels (1984) Metal. Trans, 15 A (5), pp. 793-811; Volkovich, V.A., Vasin, B.D., Tropin, O.A., Spectroelectrochemical study of molybdenum containing chloride melts (2010) Russ. Metall, 2, pp. 150-153; Vasin, B.D., Maslov, S.V., Volkovich, V.A., Application of oxidimetry for determining speciation of transition metals in molten chlorides (2005) Seventh International Symposium on Molten Salts Chemistry and Technology, 1, pp. 337-340. , Toulouse, France; Gruen, D.M., McBeth, R.L., Absorption spectra of the D-state ions TiCl6 -3, TiCl4 -, CrCl4 -2, FeCl4 -2 and CuCl4 -2 in chloride melts (1962) Nature, 194 (4827), p. 468; Volkovich, V.A., May, I., Charnock, J.M., Lewin, B., Reactions and speciation of technetium and rhenium in chloride melts: a spectroscopy study (2002) Phys. Chem. Chem. Phys, 4 (23), pp. 5753-5760; Flengas, S.N., Ingraham, T.R., Electromotive force series of metals in fused salts and activities of metal chlorides in 1: 1 molar KCl-NaCl solution (1959) J. Electrochem. Soc, 106 (8), pp. 714-721; Baraboshkin, A.N., (1976) Electrocrystallisation of Metals from Molten Salts (in Russian), , Nauka, Moscow; Krasil'nikova, N.A., Ozeryanaya, I.N., Smirnov, M.V., Shamanova, N.D., Interaction of chromium with melts of alkali metal chloride in a presence of metallic iron (1974) Prot. Met, 10 (4), pp. 446-449; Ozeryanaya, I.N., Corrosion of metals by molten salts in heat-treatment processes (1985) Metal Sci. Heat Treat, 3, pp. 184-188; Stawström, C., Hillert, M., Improved depleted-zone theory of intergranular corrosion of 18-8 stainless steel (1969) J. Iron. Steel Res. Inst, 1, pp. 77-75; Cihal, V., Kasova, I., Relation between carbide precipitation and intercrystalline corrosion of stainless steels (1970) Corros. Sci, 10, pp. 875-886; Hillert, M., Lagneborg, R., Discontinuous precipitation of M23C6 in austenitic steels (1971) J. Mater. Sci, 6 (3), pp. 208-212; Weiss, B., Stickler, R., Phase instabilities during high temperature exposure of 316 austenitic stainless steel (1972) Metall. Trans, 3 (4), pp. 851-866; Adamson, J.P., Martin, J.W., A microanalytical study of M23C6 carbides as function of aging time in Nb-bearing austenitic steels (1974) Metallography, 7, pp. 397-402; Pumphrey, P.H., Edington, J.W., The structure of the semicoherent interface between grain boundary nucleated M23C6 and austenitic stainless steel (1974) Acta Metall, 22 (1), p. 8994; Bagnall, C., Shiels, S.A., Equilibrium structures of type 304 and type 316 stainless steel in the temperature range 800-1500 f: a metallographic review (1977) Microstruct. Sci, 5, pp. 53-64. , 1977; Lai, J.K.L., Meshkat, M., Kinetics of precipitation of chi-phase and m//2//3 c//6 carbide in a cast of type 316 stainless steel (1978) Mater. Sci, 12 (9), pp. 415-420; Danyluk, S., Park, J.Y., Busch, D.E., Auger electron spectroscopy of stoichiometric chromium carbides and carbide precipitates at grain boundaries of type 304 stainless steel (1979) Scr. Metall, 13 (9), pp. 857-862; Slattery, G.F., Riordan, P.O., Lambert, M.E., Metallographic techniques for the examination of grain boundary precipitate in type 316 stainless steel (1981) Pract. Metall, 18 (6), pp. 292-303; Was, G.S., Kruger, R.M., A thermodynamic and kinetic basis for understanding chromium depletion in Ni-Cr-Fe alloys (1985) Acta Metall, 33 (5), pp. 841-854; Kai, J.J., Yu, G., Tsai, C.H., The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690 (1989) Metall. Trans. A, 20 (10), pp. 2057-2067; Mayo, W.E., Predicting IGSCC/IGA susceptibility of Ni-Cr-Fe alloys by modeling of grain boundary chromium depletion (1997) Mater. Sci. Eng, A232 (1-2), pp. 129-139; Skelton, R.P., Horton, C.A.P., The effect of thermal ageing and mechanical exposure on low cycle creepfatigue strength of 316 steel at 625 °C (1999) Mater. High Temp, 16 (2), pp. 87-97; Sourmail, T., Precipitation in creep resistant austenitic stainless steels (2001) Mater. Sci. Technol, 17 (1), pp. 1-14; Wasnik, D.N., Kain, V., Samajdar, I., Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries (2002) Acta Mater, 50 (18), pp. 4588-4601; Padilha, A.F., Rios, R.P., Decomposition of austenite in austenitic stainless steels (2002) ISIJ Int, 42 (4), pp. 325-337; Sahlaoui, H., Makhlouf, K., Sindom, H., Philibert, J., Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: experimental and modeling results (2004) Mater. Sci. Eng, A372 (1-2), pp. 98-108; Lima, A.S., Nascimento, A.M., Abreu, H.F.G., De Lima-Neto, P., Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347 (2005) J. Mater. Sci, 40 (1), pp. 139-144; Pardo, A., Merino, M.C., Coy, A.E., Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels (2007) Acta Mater, 55 (7), pp. 2239-2251; NF EN ISO 3651-1:1998. Determination of Resistance to Intergranular Corrosion of Stainless Steels. Part 1: Austenitic and Ferritic-Austenitic (Duplex) Stainless Steels (1998), Corrosion Test in Nitric Acid Medium by Measurement of Loss in Mass (Huey Test), AFNOR, Paris; NF EN ISO 3651-2:1998. Determination of Resistance to Intergranular Corrosion of Stainless Steels. Part 2: Ferritic, Austenitic and Ferritic-Austenitic (Duplex) Stainless Steels (1998), Corrosion Test in Media Containing Sulfuric Acid, AFNOR, Paris; A262-98. Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels (1998), ASTM, New York; G28-97. Standard Test Methods of Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys (1997), ASTM, New York; Novak, P., Stefec, R., Franz, F., Testing the susceptibility of stainless steel to intergranular corrosion by a reactivation method (1975) Corrosion, 31 (10), pp. 344-347; Umemura, F., Kawamoto, T., Evaluation of degree of sensitization of stainless steels using electrochemical reactivation method (1979) Boshoku Gijutsu (Corros. Eng. Jpn.), 28 (1), pp. 24-31; Cihal, V., A potentiokinetic reactivation method for predicting the I.C.C. and I.G.S.C.C. sensitivity of stainless steels and alloys (1980) Corros. Sci, 20 (6), pp. 737-744; Majidi, A.P., Streicher, M.A., Potentiodynamic reactivation method for detecting densitization in AISI 304 and 304L stainless steels (1984) Corrosion, 40 (8), pp. 393-408; Lopez, N., Cid, M., Puiggali, M., Application of double loop electrochemical potentiodynamic reactivation test to austenitic and duplex stainless steels (1997) Mater. Sci. Eng, A229 (1), pp. 123-128; Mudali, U.K., Dayal, R.K., Gnanamoorthy, J.B., Rodriguez, P., Pitting corrosion studies on nitrogenbearing austenitic stainless steels (1996) Metall. Trans, A37, pp. 1568-1573; Zahumensky, P., Tuleja, S., Orszagova, J., Corrosion resistance of 18Cr-12Ni-2.5Mo steel annealed at 500-1050 °C (1999) Corr. Sci, 41 (7), pp. 1305-1322; Sidhom, H., Amadou, T., Sahlaoui, H., Braham, C., Quantitative evaluation of aged AISI 316L stainless steel sensitization to intergranular corrosion: comparison between microstructural electrochemical and analytical methods (2007) Metall. Mat. Trans. A, 38, pp. 1269-1280; Kriaa, A., Hamdi, N., Sidhom, H., Assessment of intergranular corrosion of heat treated austenitic stainless steel (AISI 316L Grade) by electron microscopy and electrochemical tests (2008) Prot. Met, 44 (5), pp. 506-513; Wasnik, D.N., Dey, G.K., Kain, V., Samajdar, I., Precipitation stages in a 316L austenitic stainless (2003) Scr. Mater, 49 (2), pp. 135-141
Correspondence Address Abramov, A.V.; Department of Rare Metals and Nanomaterials, Ural Federal UniversityRussian Federation
Publisher Wiley Blackwell
ISBN 9781118448847; 9781118448731
Language of Original Document English
Abbreviated Source Title Molten Salts Chem. and Technol.
Source Scopus