References |
Edeleanu, C., Gibson, J.G., Meredith, J.E., Effects of diffusion on corrosion of metals by fused salts (1960) J. Iron. Steel Int, 196 (1), pp. 59-61; Stepanov, S.I., Kachina-Pullo, E.B., Corrosion of steels and nickel-chromium alloys in mixtures of alkali chlorides (in Russian) (1962) Russ. J. Appl. Chem, 35, pp. 1852-1855; Stepanov, S.I., Kachina-Pullo, E.B., Corrosion of several steels and metallic nickel in molten chlorides of sodium and magnesium (in Russian) (1964) Russ. J. Appl. Chem, 37, pp. 379-383; Kochergin, V.P., Putina, O.A., Devyatkin, V.N., Kanaeva, E.T., Corrosion and stationary potentials of St-3 and nickel in molten chlorides of alkali and alkali-earth metals (1975) Zaschita Met. (Prot. Metals), 11 (2), pp. 224-226; Ozeryananya, I.N., Krasil'nikova, N.A., Perin, S.M., The influence of oxygen on the corrosion of 8Kh18N10T steel in molten equimolar mixture of sodium and potassium chlorides (1978) Prot. Met, 14, p. 261; Raleigh, D.O., White, J.T., Ogden, C.A., Anodic corrosion rate measurements in LiCl-KCl eutectic - 2. Results on nickel, molybdenum, and stainless steel (1979) J. Electrochem. Soc, 126 (12), pp. 1093-1099; Atmani, H., Rameau, J.J., Stress corrosion cracking of 304L stainless steel in molten salts media (1984) Corros. Sci, 24 (4), pp. 279-285; Oryshich, I.V., Effect of chromium, aluminum, and titanium on the corrosion resistance of nickel in molten sodium sulfate and chloride (1985) Met. Sci. Heat Treat, 27 (3), pp. 218-222; Oryshich, I.V., Kostyrko, O.S., Influence of molybdenum, tungsten, and cobalt on the corrosion of hightemperature strength nickel alloys in molten salts (1985) Met. Sci. Heat Treat, 27 (10), pp. 740-746; Atmani, H., Rameau, J.J., Interaction entre le fluage et la corrosion electrochimique en milieu de sels fondus: Cas de l'acier inoxydable AISI 304L dans NaCl-CaCl2 fondu à 570 °C (1987) Mater. Sci. Eng, 88, pp. 247-252; Atmani, H., Rameau, J.J., Stress corrosion cracking at constant load of 304L stainless steel in molten NaCl-CaCl2 at 570°C (1987) Corros. Sci, 27 (1), pp. 35-41; Penyagina, O.P., Perin, S.M., Manukhina, T.I., Shamanova, N.D., Corrosion behaviour of 12Kh18N10T steel in chloride and carbonate melts under thermocycling conditions (in Russian) (1994) Rasplavy, 3, pp. 71-76; Shamanova, N.D., Ozeryannaya, I.N., Zyryanov, V.G., Microstructure of surface of chromium steels after interaction with kcl melt (1997) Prot. Met, 33 (3), pp. 276-279; Shamanova, N.D., Esina, N.O., The surface state of chromium- and chromium-nickel steels upon their exposure to a calcium-potassium chloride melt (1999) Prot. Met, 35 (1), pp. 43-46; Abd El-Raman, H.A., Baraka, A., Abd El-Gwad, S.A., Effect of oxide ion donors on the corrosion and dechromization of stainless steels in KCl-NaCl-BaCl2 melt (1999) J. Appl. Electrochem, 29 (10), pp. 1205-1210; Zeng, C.L., Wang, W., Wu, W.T., Electrochemical impedance models for molten salt corrosion (2001) Corros. Sci, 43 (4), pp. 787-801; Yanase, E., Arai, K., Watanabe, I., XAFS analysis of corroded metal surfaces with molten salts by conversion-electron-yield method (2001) J. Synchrotron Radiat, 8 (2), pp. 490-492; Li, Y.S., Niu, Y., Wu, W.T., Accelerated corrosion of pure Fe, Ni, Cr and several Fe-based alloys induced by ZnCl2-KCl at 450 °C in oxidizing environment (2003) Mater. Sci. Eng, A345, pp. 64-71; Mohanty, B.P., Shores, D.A., Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part II: thermochemical model studies (2004) Corros. Sci, 46 (12), pp. 2909-2924; Li, Y.S., Spiegel, M., Shimada, S., Corrosion behaviour of various model alloys with NaCl-KCl coating (2005) Mater. Chem. Phys, 93 (1), pp. 217-223; Lu, W.M., Pan, T.J., Zhang, K., Niu, Y., Accelerated corrosion of five commercial steels under a ZnCl2-KCl deposit in a reducing environment typical of waste gasification at 673-773 K (2008) Corros. Sci, 50 (7), pp. 1900-1906; Gulyaev, A.P., (1966) Metal Science (in Russian), , Metallurgia, Moscow; Sedriks, A.J., (1996) Corrosion of Stainless Steel, , John Wiley & Sons, Inc, New York; Devine, T.M., Mechanism of intergranular corrosion and pitting corrosion of austenitic and duplex 308 stainless steel (1979) J. Electrochem. Soc, 126 (3), pp. 374-385; Hall, E.L., Briant, C.L., Chromium depletion in the vicinity of carbides in sensitized austenitic stainless steels (1984) Metal. Trans, 15 A (5), pp. 793-811; Volkovich, V.A., Vasin, B.D., Tropin, O.A., Spectroelectrochemical study of molybdenum containing chloride melts (2010) Russ. Metall, 2, pp. 150-153; Vasin, B.D., Maslov, S.V., Volkovich, V.A., Application of oxidimetry for determining speciation of transition metals in molten chlorides (2005) Seventh International Symposium on Molten Salts Chemistry and Technology, 1, pp. 337-340. , Toulouse, France; Gruen, D.M., McBeth, R.L., Absorption spectra of the D-state ions TiCl6 -3, TiCl4 -, CrCl4 -2, FeCl4 -2 and CuCl4 -2 in chloride melts (1962) Nature, 194 (4827), p. 468; Volkovich, V.A., May, I., Charnock, J.M., Lewin, B., Reactions and speciation of technetium and rhenium in chloride melts: a spectroscopy study (2002) Phys. Chem. Chem. Phys, 4 (23), pp. 5753-5760; Flengas, S.N., Ingraham, T.R., Electromotive force series of metals in fused salts and activities of metal chlorides in 1: 1 molar KCl-NaCl solution (1959) J. Electrochem. Soc, 106 (8), pp. 714-721; Baraboshkin, A.N., (1976) Electrocrystallisation of Metals from Molten Salts (in Russian), , Nauka, Moscow; Krasil'nikova, N.A., Ozeryanaya, I.N., Smirnov, M.V., Shamanova, N.D., Interaction of chromium with melts of alkali metal chloride in a presence of metallic iron (1974) Prot. Met, 10 (4), pp. 446-449; Ozeryanaya, I.N., Corrosion of metals by molten salts in heat-treatment processes (1985) Metal Sci. Heat Treat, 3, pp. 184-188; Stawström, C., Hillert, M., Improved depleted-zone theory of intergranular corrosion of 18-8 stainless steel (1969) J. Iron. Steel Res. Inst, 1, pp. 77-75; Cihal, V., Kasova, I., Relation between carbide precipitation and intercrystalline corrosion of stainless steels (1970) Corros. Sci, 10, pp. 875-886; Hillert, M., Lagneborg, R., Discontinuous precipitation of M23C6 in austenitic steels (1971) J. Mater. Sci, 6 (3), pp. 208-212; Weiss, B., Stickler, R., Phase instabilities during high temperature exposure of 316 austenitic stainless steel (1972) Metall. Trans, 3 (4), pp. 851-866; Adamson, J.P., Martin, J.W., A microanalytical study of M23C6 carbides as function of aging time in Nb-bearing austenitic steels (1974) Metallography, 7, pp. 397-402; Pumphrey, P.H., Edington, J.W., The structure of the semicoherent interface between grain boundary nucleated M23C6 and austenitic stainless steel (1974) Acta Metall, 22 (1), p. 8994; Bagnall, C., Shiels, S.A., Equilibrium structures of type 304 and type 316 stainless steel in the temperature range 800-1500 f: a metallographic review (1977) Microstruct. Sci, 5, pp. 53-64. , 1977; Lai, J.K.L., Meshkat, M., Kinetics of precipitation of chi-phase and m//2//3 c//6 carbide in a cast of type 316 stainless steel (1978) Mater. Sci, 12 (9), pp. 415-420; Danyluk, S., Park, J.Y., Busch, D.E., Auger electron spectroscopy of stoichiometric chromium carbides and carbide precipitates at grain boundaries of type 304 stainless steel (1979) Scr. Metall, 13 (9), pp. 857-862; Slattery, G.F., Riordan, P.O., Lambert, M.E., Metallographic techniques for the examination of grain boundary precipitate in type 316 stainless steel (1981) Pract. Metall, 18 (6), pp. 292-303; Was, G.S., Kruger, R.M., A thermodynamic and kinetic basis for understanding chromium depletion in Ni-Cr-Fe alloys (1985) Acta Metall, 33 (5), pp. 841-854; Kai, J.J., Yu, G., Tsai, C.H., The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690 (1989) Metall. Trans. A, 20 (10), pp. 2057-2067; Mayo, W.E., Predicting IGSCC/IGA susceptibility of Ni-Cr-Fe alloys by modeling of grain boundary chromium depletion (1997) Mater. Sci. Eng, A232 (1-2), pp. 129-139; Skelton, R.P., Horton, C.A.P., The effect of thermal ageing and mechanical exposure on low cycle creepfatigue strength of 316 steel at 625 °C (1999) Mater. High Temp, 16 (2), pp. 87-97; Sourmail, T., Precipitation in creep resistant austenitic stainless steels (2001) Mater. Sci. Technol, 17 (1), pp. 1-14; Wasnik, D.N., Kain, V., Samajdar, I., Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries (2002) Acta Mater, 50 (18), pp. 4588-4601; Padilha, A.F., Rios, R.P., Decomposition of austenite in austenitic stainless steels (2002) ISIJ Int, 42 (4), pp. 325-337; Sahlaoui, H., Makhlouf, K., Sindom, H., Philibert, J., Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: experimental and modeling results (2004) Mater. Sci. Eng, A372 (1-2), pp. 98-108; Lima, A.S., Nascimento, A.M., Abreu, H.F.G., De Lima-Neto, P., Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347 (2005) J. Mater. Sci, 40 (1), pp. 139-144; Pardo, A., Merino, M.C., Coy, A.E., Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels (2007) Acta Mater, 55 (7), pp. 2239-2251; NF EN ISO 3651-1:1998. Determination of Resistance to Intergranular Corrosion of Stainless Steels. Part 1: Austenitic and Ferritic-Austenitic (Duplex) Stainless Steels (1998), Corrosion Test in Nitric Acid Medium by Measurement of Loss in Mass (Huey Test), AFNOR, Paris; NF EN ISO 3651-2:1998. Determination of Resistance to Intergranular Corrosion of Stainless Steels. Part 2: Ferritic, Austenitic and Ferritic-Austenitic (Duplex) Stainless Steels (1998), Corrosion Test in Media Containing Sulfuric Acid, AFNOR, Paris; A262-98. Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels (1998), ASTM, New York; G28-97. Standard Test Methods of Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys (1997), ASTM, New York; Novak, P., Stefec, R., Franz, F., Testing the susceptibility of stainless steel to intergranular corrosion by a reactivation method (1975) Corrosion, 31 (10), pp. 344-347; Umemura, F., Kawamoto, T., Evaluation of degree of sensitization of stainless steels using electrochemical reactivation method (1979) Boshoku Gijutsu (Corros. Eng. Jpn.), 28 (1), pp. 24-31; Cihal, V., A potentiokinetic reactivation method for predicting the I.C.C. and I.G.S.C.C. sensitivity of stainless steels and alloys (1980) Corros. Sci, 20 (6), pp. 737-744; Majidi, A.P., Streicher, M.A., Potentiodynamic reactivation method for detecting densitization in AISI 304 and 304L stainless steels (1984) Corrosion, 40 (8), pp. 393-408; Lopez, N., Cid, M., Puiggali, M., Application of double loop electrochemical potentiodynamic reactivation test to austenitic and duplex stainless steels (1997) Mater. Sci. Eng, A229 (1), pp. 123-128; Mudali, U.K., Dayal, R.K., Gnanamoorthy, J.B., Rodriguez, P., Pitting corrosion studies on nitrogenbearing austenitic stainless steels (1996) Metall. Trans, A37, pp. 1568-1573; Zahumensky, P., Tuleja, S., Orszagova, J., Corrosion resistance of 18Cr-12Ni-2.5Mo steel annealed at 500-1050 °C (1999) Corr. Sci, 41 (7), pp. 1305-1322; Sidhom, H., Amadou, T., Sahlaoui, H., Braham, C., Quantitative evaluation of aged AISI 316L stainless steel sensitization to intergranular corrosion: comparison between microstructural electrochemical and analytical methods (2007) Metall. Mat. Trans. A, 38, pp. 1269-1280; Kriaa, A., Hamdi, N., Sidhom, H., Assessment of intergranular corrosion of heat treated austenitic stainless steel (AISI 316L Grade) by electron microscopy and electrochemical tests (2008) Prot. Met, 44 (5), pp. 506-513; Wasnik, D.N., Dey, G.K., Kain, V., Samajdar, I., Precipitation stages in a 316L austenitic stainless (2003) Scr. Mater, 49 (2), pp. 135-141 |