Influence of exogenous urea on photosynthetic pigments, 14CO2 uptake, and urease activity in Elodea densa-environmental implications / Maleva M., Borisova G., Chukina N., Nekrasova G., Prasad M.N.V. // Environmental Science and Pollution Research. - 2013. - V. 20, l. 9. - P. 6172-6177.

ISSN:
09441344
Type:
Article
Abstract:
This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L-1) on photosynthetic pigments (measured spectrophotometrically), uptake of 14CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler's reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L-1) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L-1) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L-1, respectively. However, exogenous urea in high concentration (1,000 mg L-1) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa. © 2013 Springer-Verlag Berlin Heidelberg.
Author keywords:
Aquatic macrophytes; Contamination; Photosynthesis; Urea; Urease; Water bodies
Index keywords:
carbon; carbon dioxide; chlorophyll; urea; urease; aquatic plant; bioaccumulation; carbon dioxide; concentration (composition); dose-response relationship; enzyme activity; leaf; macrophyte; photosynt
DOI:
10.1007/s11356-013-1639-4
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880802034&doi=10.1007%2fs11356-013-1639-4&partnerID=40&md5=3a78de0f7a4ddb84d804388713bbae65
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880802034&doi=10.1007%2fs11356-013-1639-4&partnerID=40&md5=3a78de0f7a4ddb84d804388713bbae65
Affiliations Department of Biology, Institute of Natural Sciences, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation; Department of Plant Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, 500046, India
Author Keywords Aquatic macrophytes; Contamination; Photosynthesis; Urea; Urease; Water bodies
Chemicals/CAS carbon, 7440-44-0; carbon dioxide, 124-38-9, 58561-67-4; chlorophyll, 1406-65-1, 15611-43-5; urea, 57-13-6; urease, 9002-13-5; Carbon Dioxide, 124-38-9; Carbon Radioisotopes; Chlorophyll, 1406-65-1; Urea, 57-13-6; Urease, 3.5.1.5
References Azizullah, A., Nasir, A., Richter, P., Lebert, M., Häder, D.P., Evaluation of the adverse effects of two commonly used fertilizers, DAP and urea, on motility and orientation of the green flagellate Euglena gracilis (2011) Environ Exp Bot, 74, pp. 140-150; Baker, J.E., Thompson, J.F., Metabolism of urea and ornithine cycle intermediates by nitrogen-starved cells of Chlorella vulgaris (1962) Plant Physiol, 37, pp. 618-624; Bespamyatnov, G.P., Krotov, Y.A., (1985) PDK Khimicheskikh Veshchestv V Okruzhayushchei Srede: Spravochnik (Maximum Allowable Concentrations of Chemical Substances in the Environment: Reference Book), , 585 p, Leningrad: Khimiya; Borisova, G.G., Feudorova, Y.V., The impact of diffuse run-off from agricultural catchment areas on surface water quality and their management (1999) International Conference on EU Water Management Framework Directive and Danubian Countries, pp. 176-181. , E. Palmaiova (Ed.), Bratislava: Stimul; Borisova, G.G., Konistyapina, O.U., Environmental management of diffuse runoff caused by agricultural activities (2002) Proceedings of the 6th International Conference of Diffuse Pollution, pp. 498-502. , IWA/NWA, Amsterdam; Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254; Bremner, J.M., Krogmeier, M.J., Elimination of the adverse effects of urea fertilizer on seed germination, seedling growth, and early plant growth in soil (1988) Proc Natl Acad Sci, 85, pp. 4601-4604; Chaudhry, Q., Schroder, P., Werck-Reichhart, D., Grajek, W., Marecik, R., Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment (2002) Environ Sci Pollut Res, 9 (1), pp. 4-17; Chirkova, T.V., Cell. Membranes and plant resistance to stresses (in Russian) (1997) Soros Obr Zh, 9, pp. 12-17; Coleman, J.O.D., Frova, C., Schroder, P., Tissut, M., Exploiting plant metabolism for the phytoremediation of persistent herbicides (2002) Environ Sci Pollut Res, 9, pp. 18-28; D'Apolito, M., Du, X., Zong, H., Catucci, A., Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure (2010) J Clin Invest, 120, pp. 203-213; Das, P., Datta, R., Makris, K.C., Sarkar, D., Vetiver grass is capable of removing TNT from soil in the presence of urea (2010) Environ Pollut, 158, pp. 1980-1983; Dosnon-Olette, R., Schröder, P., Bartha, B., Aziz, A., Couderchet, M., Eullaffroy, P., Enzymatic basis for fungicide removal by Elodea canadensis (2011) Environ Sci Pollut Res, 18, pp. 1015-1021; Gatidou, G., Iatrou, E., Investigation of photodegradation and hydrolysis of selected substituted urea and organophosphate pesticides in water (2011) Environ Sci Pollut Res, 18, pp. 949-957; Gonzalez, A., Plamondon, A.P., Urea fertilization of natural forest: Effects on water quality (1976) Forest Ecol Management, 1, pp. 213-221; Herbeck, L.S., Unger, D., Wu, Y., Jennerjahn, T.C., Effluent, nutrient and organic matter export from shrimp and fishponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China (2012) Cont Shelf Res, , doi:10.1016/j.csr.2012.05.006; Houlès, V., Guérif, M., Mary, B., Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations (2007) Eur J Agron, 27, pp. 1-11; Jayaraman, J., (1981) Laboratory Manual in Biochemistry, , 64 p, New Delhi: Wiley; Krogmeier, M.J., McCarty, W., Bremner, J.M., Phytotoxicity of foliar-applied urea (1989) Proc Natl Acad Sci USA, 86, pp. 8189-8191; Lichtenthaler, H., Chlorophylls and carotenoids: pigments of photosynthetic membranes (1987) Methods Enzymol, 148, pp. 350-382; Lima, W.K., Rosgen, J., Englander, S.W., Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group (2009) Proc Natl Acad Sci, 106, pp. 2595-2600; Malec, P., Maleva, M.G., Prasad, M.N.V., Strzałka, K., Responses of Lemna trisulca L. (Duckweed) exposed to low doses of cadmium: thiols, metal binding complexes and photosynthetic pigments as sensitive biomarkers of ecotoxicity (2010) Protoplasma, 240, pp. 69-74; Maleva, M.G., Nekrasova, G.F., Borisova, G.G., Chukina, N.V., Ushakova, O.S., Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea (2012) Rus J Plant Physiol, 59, pp. 190-197; Mokronosov, A.T., Dobrov, A.V., Chamber for studying photosynthetic metabolism and for determination of potential metabolism in isolated leaves (1973) Voprosy Regulyatsii Fotosinteza (Problems of Photosynthesis Regulation), pp. 149-152. , A. T. Mokronosov (Ed.), Sverdlovsk: Ural. Gos. Univ; Mokronosov, A.T., Ilinych, Z.G., Shukolyukova, N.I., Assimilation of urea by potato plants (1966) Fiziologiya Rasteniy (Sov Plant Physiol), 13, pp. 798-806; Mony, C., Koschnick, T.J., Haller, W.T., Muller, S., Competition between two invasive Hydrocharitaceae (Hydrilla verticillata (L.f.) (Royle) and Egeria densa (Planch)) as influenced by sediment fertility and season (2007) Aquat Bot, 86, pp. 236-242; Ng, W.J., Sim, T.S., Ong, S.L., Kho, K., Ho, L.M., Tay, S.H., Goh, C.C., The effect of Elodea densa on aquaculture water quality (1990) Aquaculture, 84, pp. 267-276; Prasad, M.N.V., Phytoremediation of metals in the environment for sustainable development (2004) Proc Indian Natl Sci Acad, 70 (1), pp. 71-98; Rai, P.K., Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes (2009) Crit Rev Environ Sci Technol, 39, pp. 697-753; Rossky, P.J., Protein denaturation by urea: slash and bond (2008) Proc Natl Acad Sci, 105, pp. 16825-16826; Saygideger, S.D., Dogan, M., Gultekin, Z.G., Effects of copper on amounts of photosynthetic pigments, nitrogen and free proline in the aquatic macrophyte Typha latifolia L (2009) Fresenius Environ Bull, 5, pp. 543-548; Shaahan, M.M., El-Sayed, A.A., Abou El-Nour, E.A.A., Predicting nitrogen, magnesium and iron nutritional status in some perennial crops using a portable chlorophyll meter (1999) Sci Hortic, 82, pp. 339-348; Sirko, A., Brodzik, R., Plant ureases: roles and regulation (2000) Acta Biochim Pol, 47, pp. 1189-1195; Strock, J.S., Ammonification (2008) Encyclopedia of Ecology, pp. 162-165. , doi: 10. 1016/B978-008045405-4. 00256-1; Usenko, O.M., Sakevich, A.E., Klochenko, P.D., The participations of photosynthetic hydrobionts in urea degradation (2000) Uk Hidrobiol J, 36, pp. 20-29; van den Berg, A.K., Perkins, T.D., Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves (2004) For Ecol Manag, 200, pp. 113-117; Witte, C.P., Urea metabolism in plants (2011) Plant Sci, 180, pp. 431-438
Correspondence Address Prasad, M. N. V.; Department of Plant Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, 500046, India; email: prasad_mnv@yahoo.com
CODEN ESPLE
PubMed ID 23546854
Language of Original Document English
Abbreviated Source Title Environ. Sci. Pollut. Res.
Source Scopus