References |
Berenbaum, R., Brodie, I., Measurement of the tensile strength of brittle materials (1959) Br. J. Appl. Phys., 10, pp. 281-287; Zaytsev, D., Panfilov, P., Deformation behavior of human enamel and dentin-enamel junction under compression (2014) Mater. Sci. Eng. C Mater. Biol. Appl., 34, pp. 15-21; Palamara, J.E., Wilson, P.R., Thomas, C.D., Messer, H.H., A new imaging technique for measuring the surface strains applied to dentine (2000) J. Dent., 28 (2), pp. 141-146; Szendi-Horvath, G., Fracture toughness determination of brittle materials using small to extremely small specimens (1980) Engineering Fracture Mechanics, 13 (4), pp. 955-961. , DOI 10.1016/0013-7944(80)90025-9; Thomaidisa, S., Kakabouraa, A., Muellerb, W.D., Zinelisc, S., Mechanical properties of contemporary composite resins and their interrelations (2013) Dent. Mater., 29, pp. 132-141; Lien, W., Vandewalle, K.S., Physical properties of a new silorane-based restorative system (2010) Dent. Mater., 26, pp. 337-344; Lertchirakarn, V., Palamara, J.E.A., Messer, H.H., Anisotropy of tensile strength of root dentin (2001) Journal of Dental Research, 80 (2), pp. 453-456; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) Int. J. Biomater., , 10.1155/2012/854539; Lehman, M.L., Tensile strength of human dentin (1967) J. Dent. Res., 46 (1), pp. 197-201; Mannocci, F., Pilecki, P., Bertelli, E., Watson, T.F., Density of dentinal tubules affects the tensile strength of root dentin (2004) Dent. Mater., 20, pp. 293-296; Gianninia, M., Soares, C.J., Carvalho, R.M., Ultimate tensile strength of tooth structures (2004) Dent. Mater., 20, pp. 322-329; Hayashi, M., Koychev, E.V., Okamura, K., Sugeta, A., Hongo, C., Okuyama, K., Ebisu, S., Heat treatment strengthens human dentin (2008) J. Dent. Res., 87 (8), pp. 762-766; Nalla, R.K., Kinney, J.H., Ritchie, R.O., Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms (2003) Biomaterials, 24 (22), pp. 3955-3968. , DOI 10.1016/S0142-9612(03)00278-3; Nadai, A., (1950) Theory of Flow and Fracture of Solids, 1. , McGraw-Hill New York; Rebinder, P.A., (1978) Selected Works: Surface Phenomena, , Physicochemical Mechanics [in Rus- sian] Nauka, Moscow; Nalla, R.K., Kinney, J.H., Tomsia, A.P., Ritchie, R.O., Role of alcohol in the fracture resistance of teeth (2006) Journal of Dental Research, 85 (11), pp. 1022-1026. , DOI 10.1177/154405910608501109; Maciel, K.T., Carvalho, R.M., Ringle, R.D., Preston, C.D., Russell, C.M., Pashley, D.H., The effects of acetone, ethanol, HEMA, and air on the stiffness of human decalcified dentin matrix (1996) Journal of Dental Research, 75 (11), pp. 1851-1858; Zaytsev, D., Selezneva, N.V., Grigoriev, S.S., Panfilov, P., The influence of liquid on the deformation behavior of human dentin (2013) Prot. Met. Phys. Chem. Surf., 49 (5), pp. 517-520; Knott, J.F., (1973) Fundamentals of Fracture Mechanics London, , Butterworths |