Deformation behavior of human dentin in liquid nitrogen: A diametral compression test / Zaytsev D., Panfilov P. // Materials Science and Engineering C. - 2014. - V. 42, l. . - P. 48-51.

ISSN:
09284931
Type:
Article
Abstract:
Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77 K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300 K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. © 2014 Elsevier B.V.
Author keywords:
Dentin; Tensile strength; Tooth
Index keywords:
Compression testing; Crack tips; Cracks; Deformation; Fracture mechanics; Plasticity; Tensile strength; Crack tip blunting; Deformation and fracture; Deformation behavior; Dentin; Diametral compressio
DOI:
10.1016/j.msec.2014.05.011
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901406551&doi=10.1016%2fj.msec.2014.05.011&partnerID=40&md5=5443cd777c829f0f5581e970eb271ad5
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901406551&doi=10.1016%2fj.msec.2014.05.011&partnerID=40&md5=5443cd777c829f0f5581e970eb271ad5
Affiliations Department of Physics, Institute of Natural Sciences, Ural Federal University, Lenin Avenue, 51, 620083 Ekaterinburg, Russian Federation
Author Keywords Dentin; Tensile strength; Tooth
Chemicals/CAS nitrogen, 7727-37-9; Nitrogen
Funding Details 14- 08-31691, RFBR, Russian Foundation for Basic Research
References Berenbaum, R., Brodie, I., Measurement of the tensile strength of brittle materials (1959) Br. J. Appl. Phys., 10, pp. 281-287; Zaytsev, D., Panfilov, P., Deformation behavior of human enamel and dentin-enamel junction under compression (2014) Mater. Sci. Eng. C Mater. Biol. Appl., 34, pp. 15-21; Palamara, J.E., Wilson, P.R., Thomas, C.D., Messer, H.H., A new imaging technique for measuring the surface strains applied to dentine (2000) J. Dent., 28 (2), pp. 141-146; Szendi-Horvath, G., Fracture toughness determination of brittle materials using small to extremely small specimens (1980) Engineering Fracture Mechanics, 13 (4), pp. 955-961. , DOI 10.1016/0013-7944(80)90025-9; Thomaidisa, S., Kakabouraa, A., Muellerb, W.D., Zinelisc, S., Mechanical properties of contemporary composite resins and their interrelations (2013) Dent. Mater., 29, pp. 132-141; Lien, W., Vandewalle, K.S., Physical properties of a new silorane-based restorative system (2010) Dent. Mater., 26, pp. 337-344; Lertchirakarn, V., Palamara, J.E.A., Messer, H.H., Anisotropy of tensile strength of root dentin (2001) Journal of Dental Research, 80 (2), pp. 453-456; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) Int. J. Biomater., , 10.1155/2012/854539; Lehman, M.L., Tensile strength of human dentin (1967) J. Dent. Res., 46 (1), pp. 197-201; Mannocci, F., Pilecki, P., Bertelli, E., Watson, T.F., Density of dentinal tubules affects the tensile strength of root dentin (2004) Dent. Mater., 20, pp. 293-296; Gianninia, M., Soares, C.J., Carvalho, R.M., Ultimate tensile strength of tooth structures (2004) Dent. Mater., 20, pp. 322-329; Hayashi, M., Koychev, E.V., Okamura, K., Sugeta, A., Hongo, C., Okuyama, K., Ebisu, S., Heat treatment strengthens human dentin (2008) J. Dent. Res., 87 (8), pp. 762-766; Nalla, R.K., Kinney, J.H., Ritchie, R.O., Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms (2003) Biomaterials, 24 (22), pp. 3955-3968. , DOI 10.1016/S0142-9612(03)00278-3; Nadai, A., (1950) Theory of Flow and Fracture of Solids, 1. , McGraw-Hill New York; Rebinder, P.A., (1978) Selected Works: Surface Phenomena, , Physicochemical Mechanics [in Rus- sian] Nauka, Moscow; Nalla, R.K., Kinney, J.H., Tomsia, A.P., Ritchie, R.O., Role of alcohol in the fracture resistance of teeth (2006) Journal of Dental Research, 85 (11), pp. 1022-1026. , DOI 10.1177/154405910608501109; Maciel, K.T., Carvalho, R.M., Ringle, R.D., Preston, C.D., Russell, C.M., Pashley, D.H., The effects of acetone, ethanol, HEMA, and air on the stiffness of human decalcified dentin matrix (1996) Journal of Dental Research, 75 (11), pp. 1851-1858; Zaytsev, D., Selezneva, N.V., Grigoriev, S.S., Panfilov, P., The influence of liquid on the deformation behavior of human dentin (2013) Prot. Met. Phys. Chem. Surf., 49 (5), pp. 517-520; Knott, J.F., (1973) Fundamentals of Fracture Mechanics London, , Butterworths
Correspondence Address Zaytsev, D.; Department of Physics, Institute of Natural Sciences, Ural Federal University, Lenin Avenue, 51, 620083 Ekaterinburg, Russian Federation; email: Dmitry.Zaytsev@urfu.ru
Publisher Elsevier Ltd
PubMed ID 25063091
Language of Original Document English
Abbreviated Source Title Mater. Sci. Eng. C
Source Scopus