References |
Zhang, Y., Venugopal, J.R., El-Turki, A., Ramakrishna, S.Su.B., Lim, C.T., Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/ chitosan for bone tissue engineering (2008) Biomaterials, 29, pp. 4314-4322; Ji, B., Gao, H., Mechanical properties of nanostructure of biological materials (2004) J. Mech. Phys. Solids, 52, pp. 1963-1990; Bechtle, S., Ang, S.F., Schneider, G.A., On the mechanical properties of hierarchically structured biological materials (2010) Biomaterials, 31, pp. 6378-6385; Kinney, J.H., Marshall, S.J., Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature (2003) Crit. Rev. Oral Biol. Med., (1), pp. 13-29; Pashley, D.H., Dentin: A dynamic substrate: A review (1989) Scanning Microsc., 3, pp. 161-174; Buehler, M.J., Nature designs tough collagen: Explaining the nanostructure of collagen fibrils (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (33), pp. 12285-12290. , DOI 10.1073/pnas.0603216103; Habelitz, S., Balooch, M., Marshall, S.J., Balooch, G., Marshall Jr., G.W., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils (2002) Journal of Structural Biology, 138 (3), pp. 227-236. , DOI 10.1016/S1047-8477(02)00029-1, PII S1047847702000291; Nalla, R.K., Kinney, J.H., Ritchie, R.O., Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms (2003) Biomaterials, 24 (22), pp. 3955-3968. , DOI 10.1016/S0142-9612(03)00278-3; Imbeni, V., Nalla, R.K., Bosi, C., Kinney, J.H., Ritchie, R.O., In vitro fracture toughness of human dentin (2003) Journal of Biomedical Materials Research - Part A, 66 (1), pp. 1-9; Staninec, M., Nguyen, H., Kim, P., Marshall, G.W., Ritchie, R.O., Marshall, S.J., Four-point bending evaluation of dentin-composite interfaces with various stresses (2008) Med. Oral Patol. Oral Cir. Bucal, 13 (1), pp. 81-84; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of root dentin under Sjögren's syndrome (2011) Mater. Lett., 65, pp. 2435-2438; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) Int. J. Biomater., , 10.1155/2012/854539; Waters, N.E., Some mechanical and physical properties of teeth (1980) Symp. Soc. Exp. Biol., 34, pp. 99-135; Yokobori, T., (1968) An Interdisciplinary Approach to Fracture and Strength of Solids, , Wolters-Noordhoff Scientific Publications; Knott, J.F., (1973) Fundamentals of Fracture Mechanics London, , Butterworths; Lyles, R.L., Wilsdorf, H.G.G.R., Microcrack nucleation and fracture in silver crystals (1975) Acta Metall., 23 (2), pp. 269-277; Robertson, I.M., Birnbaum, H.K., Hvem study of hydrogen effects on the deformation and fracture of nickel (1986) Acta Metallurgica, 34 (3), pp. 353-366. , DOI 10.1016/0001-6160(86)90071-4; Black, G.V., An investigation into the physical characters of the human teeth in relation to their diseases and to practical dental operations (1895) Dent. Cosmos, 37, pp. 353-421. , (469-484, 553-571, 637-661, and 737-757); Peyton, F.A., Mahler, D.B., Hershanov, B., Physical properties of dentine (1952) J. Dent. Res., 31, pp. 366-370; Stanford, J.W., Paffenbergeg, G.G., Sweeney, A.B., Determination of some compressive properties of human enamel and dentine (1958) J. Am. Dent. Assoc., 57, pp. 487-495; Stanford, J.W., Weigel, K.V., Paffenberger, G.C., Sweeney, W.T., Compressive properties of hard tooth tissues and some restorative materials (1960) J. Am. Dent. Assoc., 60, pp. 746-751; Graig, R.G., Peyton, F.A., Elastic and mechanical properties of human dentin (1958) J. Dent. Res., 37 (4), pp. 710-718; Nadai, A., (1950) Theory of Flow and Fracture of Solids, 1 VOL.. , McGraw-Hill New York; Bridgman, P.W., (1952) Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure, , McGraw-Hill New York |