On the deformation behavior of human dentin under compression and bending / Zaytsev D., Ivashov A.S., Mandra J.V., Panfilov P. // Materials Science and Engineering C. - 2014. - V. 41, l. . - P. 83-90.

ISSN:
09284931
Type:
Article
Abstract:
The cause of difference in deformation behavior of human dentin under compression and bending is discussed. Mechanical properties of dentin under these deformation schemes are compared. Microstructural study of fracture surfaces of samples and cracks in dentin is carried out, too. Dentin behaves like a brittle solid under bending, whereas it exhibits various types of response from brittle to highly deformable under compression that depended on the geometry of sample (d/h ratio of a cubic sample). It is shown that the quantity of cracks on the compressed sample increases when its elasticity and plasticity grow up, whereas under bending the failure of sample occurs due to the advancement of dominant crack. Deformation and crack growth are the channels for the accommodation of applied stress in dentin. Crack growth is the leading one when the level of tensile stress in sample is dominant, whereas deformation becomes the leading channel when compression stress is dominant. However, in both cases contribution of the concurrent channel cannot be ignored. This feature is caused by the ductile fracture mode of dentin on the mesoscopic level. © 2014 Elsevier B.V.
Author keywords:
Bending; Compression; Deformation; Dentin; Fracture
Index keywords:
Behavioral research; Bending (forming); Compaction; Cracks; Deformation; Ductile fracture; Elasticity; Fracture; Applied stress; Brittle solids; Compression stress; Deformation behavior; Dentin; Fract
DOI:
10.1016/j.msec.2014.04.046
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899986081&doi=10.1016%2fj.msec.2014.04.046&partnerID=40&md5=ef1e9b9ea13a43ede658f8e7671097ad
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899986081&doi=10.1016%2fj.msec.2014.04.046&partnerID=40&md5=ef1e9b9ea13a43ede658f8e7671097ad
Affiliations Department of Physics, Institute of Natural Sciences, Ural Federal University, Lenin Avenue, 51, 620083, Ekaterinburg, Russian Federation; Ural State Medical University, Ekaterinburg, Russian Federation
Author Keywords Bending; Compression; Deformation; Dentin; Fracture
Funding Details 14-08-31691, RFBR, Russian Foundation for Basic Research
References Zhang, Y., Venugopal, J.R., El-Turki, A., Ramakrishna, S.Su.B., Lim, C.T., Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/ chitosan for bone tissue engineering (2008) Biomaterials, 29, pp. 4314-4322; Ji, B., Gao, H., Mechanical properties of nanostructure of biological materials (2004) J. Mech. Phys. Solids, 52, pp. 1963-1990; Bechtle, S., Ang, S.F., Schneider, G.A., On the mechanical properties of hierarchically structured biological materials (2010) Biomaterials, 31, pp. 6378-6385; Kinney, J.H., Marshall, S.J., Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature (2003) Crit. Rev. Oral Biol. Med., (1), pp. 13-29; Pashley, D.H., Dentin: A dynamic substrate: A review (1989) Scanning Microsc., 3, pp. 161-174; Buehler, M.J., Nature designs tough collagen: Explaining the nanostructure of collagen fibrils (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (33), pp. 12285-12290. , DOI 10.1073/pnas.0603216103; Habelitz, S., Balooch, M., Marshall, S.J., Balooch, G., Marshall Jr., G.W., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils (2002) Journal of Structural Biology, 138 (3), pp. 227-236. , DOI 10.1016/S1047-8477(02)00029-1, PII S1047847702000291; Nalla, R.K., Kinney, J.H., Ritchie, R.O., Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms (2003) Biomaterials, 24 (22), pp. 3955-3968. , DOI 10.1016/S0142-9612(03)00278-3; Imbeni, V., Nalla, R.K., Bosi, C., Kinney, J.H., Ritchie, R.O., In vitro fracture toughness of human dentin (2003) Journal of Biomedical Materials Research - Part A, 66 (1), pp. 1-9; Staninec, M., Nguyen, H., Kim, P., Marshall, G.W., Ritchie, R.O., Marshall, S.J., Four-point bending evaluation of dentin-composite interfaces with various stresses (2008) Med. Oral Patol. Oral Cir. Bucal, 13 (1), pp. 81-84; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of root dentin under Sjögren's syndrome (2011) Mater. Lett., 65, pp. 2435-2438; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) Int. J. Biomater., , 10.1155/2012/854539; Waters, N.E., Some mechanical and physical properties of teeth (1980) Symp. Soc. Exp. Biol., 34, pp. 99-135; Yokobori, T., (1968) An Interdisciplinary Approach to Fracture and Strength of Solids, , Wolters-Noordhoff Scientific Publications; Knott, J.F., (1973) Fundamentals of Fracture Mechanics London, , Butterworths; Lyles, R.L., Wilsdorf, H.G.G.R., Microcrack nucleation and fracture in silver crystals (1975) Acta Metall., 23 (2), pp. 269-277; Robertson, I.M., Birnbaum, H.K., Hvem study of hydrogen effects on the deformation and fracture of nickel (1986) Acta Metallurgica, 34 (3), pp. 353-366. , DOI 10.1016/0001-6160(86)90071-4; Black, G.V., An investigation into the physical characters of the human teeth in relation to their diseases and to practical dental operations (1895) Dent. Cosmos, 37, pp. 353-421. , (469-484, 553-571, 637-661, and 737-757); Peyton, F.A., Mahler, D.B., Hershanov, B., Physical properties of dentine (1952) J. Dent. Res., 31, pp. 366-370; Stanford, J.W., Paffenbergeg, G.G., Sweeney, A.B., Determination of some compressive properties of human enamel and dentine (1958) J. Am. Dent. Assoc., 57, pp. 487-495; Stanford, J.W., Weigel, K.V., Paffenberger, G.C., Sweeney, W.T., Compressive properties of hard tooth tissues and some restorative materials (1960) J. Am. Dent. Assoc., 60, pp. 746-751; Graig, R.G., Peyton, F.A., Elastic and mechanical properties of human dentin (1958) J. Dent. Res., 37 (4), pp. 710-718; Nadai, A., (1950) Theory of Flow and Fracture of Solids, 1 VOL.. , McGraw-Hill New York; Bridgman, P.W., (1952) Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure, , McGraw-Hill New York
Correspondence Address Zaytsev, D.; Department of Physics, Institute of Natural Sciences, Ural Federal University, Lenin Avenue, 51, 620083, Ekaterinburg, Russian Federation; email: Dmitry.Zaytsev@urfu.ru
Publisher Elsevier BV
PubMed ID 24907741
Language of Original Document English
Abbreviated Source Title Mater. Sci. Eng. C
Source Scopus