Deformation behavior of human enamel and dentin-enamel junction under compression / Zaytsev D., Panfilov P. // Materials Science and Engineering C. - 2014. - V. 34, l. 1. - P. 15-21.

ISSN:
09284931
Type:
Article
Abstract:
Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850 MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800 MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V.
Author keywords:
Compression; Crack; Deformation; Dentin-enamel junction; Human dentin; Human enamel
Index keywords:
Creep conditions; Deformation behavior; Dentin-enamel junctions; Hierarchical composite; Human dentin; Human enamel; Microscopic scale; Uni-axial compression; Compaction; Compressive strength; Cracks;
DOI:
10.1016/j.msec.2013.10.009
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887492312&doi=10.1016%2fj.msec.2013.10.009&partnerID=40&md5=b52fdcf702481f09e5c5338f07acf128
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887492312&doi=10.1016%2fj.msec.2013.10.009&partnerID=40&md5=b52fdcf702481f09e5c5338f07acf128
Affiliations Department of Physics, Institute of Natural Sciences, Ural Federal University, Lenin Avenue, 51, 620083, Ekaterinburg, Russian Federation
Author Keywords Compression; Crack; Deformation; Dentin-enamel junction; Human dentin; Human enamel
References Daculsi, G., Menanteau, J., Kerbel, L.M., Mitre, D., Lehgth and shape of enamel crystals (1984) Calcif. Tissue Int., 36, pp. 550-555; Cui, F.Z., Ge, J., New observation of the hierarchical structure of human enamel, from nanoscale to microscale (2007) J. Tissue Eng. Regen. Med., 1, pp. 185-191; He, L.H., Swain, M.V., Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics (2008) Journal of the Mechanical Behavior of Biomedical Materials, 1 (1), pp. 18-29. , DOI 10.1016/j.jmbbm.2007.05.001, PII S1751616107000082; Stanford, J.W., Weigel, K.V., Paffenberger, G.C., Sweeney, W.T., Determination of some compressive properties of human enamel and dentin (1958) J. Am. Dent. Assoc., 57, pp. 487-495; Stanford, J.W., Weigel, K.V., Paffenberger, G.C., Sweeney, W.T., Compressive properties of hard tooth tissues and some restorative materials (1960) J. Am. Dent. Assoc., 60, pp. 746-751; Craig, R.G., Peyton, F.A., Johnson, D.W., Compressive properties of enamel, dental cements, and gold (1961) J. Dent. Res., 40, pp. 936-945; Knott, J.F., (1973) Fundamentals of Fracture Mechanics London, , Butterworths; Ang, S.F., Bortel, E.L., Swain, M.V., Klocke, A., Schneider, G.A., Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales (2010) Biomaterials, 31 (7), pp. 1955-1963; Nadai, A., (1950) Theory of Flow and Fracture of Solids, 1. , McGraw-Hill New York; Black, G.V., An investigation into the physical characters of the human teeth in relation to their diseases and to practical dental operations (1895) Dent. Cosmos, 37, pp. 353-421. , (469-484, 553-571, 637-661, and 737-757); Peyton, F.A., Mahler, D.B., Hershanov, B., Physical properties of dentine (1952) J. Dent. Res., 31, pp. 366-370; Graig, R.G., Peyton, F.A., Elastic and mechanical properties of human dentin (1958) J. Dent. Res., 37 (4), pp. 710-718; Watts, D.C., El Mowafy, O.M., Grant, A.A., Temperature-dependence of compressive properties of human dentin (1987) J. Dent. Res., 66 (1), pp. 29-32; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) Int. J. Biomater., , (2012, Article ID 854539 8 pages); Liang, J.Z., Toughening and reinforcing in rigid inorganic particulate filled poly(propylene): A review (2001) J. Appl. Polym. Sci., 83 (7), pp. 1547-1555; Kinney, J.H., Balooch, M., Marshall, G.W., Marshall, S.J., A micromechanics model of the elastic properties of human dentine (1999) Archives of Oral Biology, 44 (10), pp. 813-822. , DOI 10.1016/S0003-9969(99)00080-1, PII S0003996999000801; Staines, M., Robinson, W.H., Hood, J.A.A., Spherical indentation of tooth enamel (1981) J. Mater. Sci., 16, pp. 2551-2556; Hsiung, L.L., Depth dependence of the mechanical properties of human enamel by nanoindentation (2006) J. Biomed. Mater. Res. A, pp. 1-28; He, L.H., Swain, M.V., Enamel - A "metallic-like" deformable biocomposite (2007) J. Dent., 35, pp. 431-437; Waters, N.E., Some mechanical and physical properties of teeth (1980) Symp. Soc. Exp. Biol., 34, pp. 99-135; Kinney, J.H., Marshall, S.J., Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature (2003) Crit. Rev. Oral Biol. Med., 14 (1), pp. 13-29; Marshall, S.J., Balooch, M., Habelitz, S., Balooch, G., Gallagher, R., Marshall, G.W., The dentin - enamel junction - A natural, multilevel interface (2003) Journal of the European Ceramic Society, 23 (15), pp. 2897-2904. , DOI 10.1016/S0955-2219(03)00301-7; Fong, H., Sarikaya, M., White, S.N., Snead, M.L., Nanomechanical properties profiles across dentin-enamel junction of human incisor teeth (2000) Mater. Sci. Eng. C, 7 (1), pp. 119-128; Hudson, A., Harrison, J.P., (1997) Engineering Rock Mechanics An Introduction to the Principles, 1, p. 444. , Elsevier Science Ltd Oxford; Bajaj, D., Arola, D., Role of prism decussation on fatigue crack growth and fracture of human enamel (2009) Acta Biomater., 5, pp. 3045-3056; Nalla, R.K., Kinney, J.H., Ritchie, R.O., Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms (2003) Biomaterials, 24 (22), pp. 3955-3968. , DOI 10.1016/S0142-9612(03)00278-3; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of root dentin under Sjögren's syndrome (2011) Mater. Lett., 65, pp. 2435-2438; Zaytsev, D., Grigoriev, S., Antonova, O., Panfilov, P., Deformation and fracture of human dentin (2011) Deform. Fract. Mater., 6, pp. 37-43. , (in Russian); Zaytsev, D., Grigoriev, S., Mushina, O., Panfilov, P., Deformation and fracture of human enamel (2011) Deform. Fract. Mater., 12, pp. 24-30. , (in Russian); Dong, X.D., Ruse, N.D., Fatigue crack propagation path across the dentinoenamel junction complex in human teeth (2003) Journal of Biomedical Materials Research - Part A, 66 (1), pp. 103-109; Imbeni, V., Kruzic, J.J., Marshall, G.W., Marshall, S.J., Ritchie, R.O., The dentin-enamel junction and the fracture of human teeth (2005) Nature Materials, 4 (3), pp. 229-232. , DOI 10.1038/nmat1323; Bechtle, S., Fett, T., Rizzi, G., Habelitz, S., Klocke, A., Schneider, G.A., Crack arrest teeth at the dentinoenamel junction caused by elastic modulus mismatch (2010) Biomaterials, 31, pp. 4238-4247
Correspondence Address Zaytsev, D.; Department of Physics, Institute of Natural Sciences, Ural Federal University, Lenin Avenue, 51, 620083, Ekaterinburg, Russian Federation; email: Dmitry.Zaitsev@usu.ru
PubMed ID 24268228
Language of Original Document English
Abbreviated Source Title Mater. Sci. Eng. C
Source Scopus