References |
Daculsi, G., Menanteau, J., Kerbel, L.M., Mitre, D., Lehgth and shape of enamel crystals (1984) Calcif. Tissue Int., 36, pp. 550-555; Cui, F.Z., Ge, J., New observation of the hierarchical structure of human enamel, from nanoscale to microscale (2007) J. Tissue Eng. Regen. Med., 1, pp. 185-191; He, L.H., Swain, M.V., Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics (2008) Journal of the Mechanical Behavior of Biomedical Materials, 1 (1), pp. 18-29. , DOI 10.1016/j.jmbbm.2007.05.001, PII S1751616107000082; Stanford, J.W., Weigel, K.V., Paffenberger, G.C., Sweeney, W.T., Determination of some compressive properties of human enamel and dentin (1958) J. Am. Dent. Assoc., 57, pp. 487-495; Stanford, J.W., Weigel, K.V., Paffenberger, G.C., Sweeney, W.T., Compressive properties of hard tooth tissues and some restorative materials (1960) J. Am. Dent. Assoc., 60, pp. 746-751; Craig, R.G., Peyton, F.A., Johnson, D.W., Compressive properties of enamel, dental cements, and gold (1961) J. Dent. Res., 40, pp. 936-945; Knott, J.F., (1973) Fundamentals of Fracture Mechanics London, , Butterworths; Ang, S.F., Bortel, E.L., Swain, M.V., Klocke, A., Schneider, G.A., Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales (2010) Biomaterials, 31 (7), pp. 1955-1963; Nadai, A., (1950) Theory of Flow and Fracture of Solids, 1. , McGraw-Hill New York; Black, G.V., An investigation into the physical characters of the human teeth in relation to their diseases and to practical dental operations (1895) Dent. Cosmos, 37, pp. 353-421. , (469-484, 553-571, 637-661, and 737-757); Peyton, F.A., Mahler, D.B., Hershanov, B., Physical properties of dentine (1952) J. Dent. Res., 31, pp. 366-370; Graig, R.G., Peyton, F.A., Elastic and mechanical properties of human dentin (1958) J. Dent. Res., 37 (4), pp. 710-718; Watts, D.C., El Mowafy, O.M., Grant, A.A., Temperature-dependence of compressive properties of human dentin (1987) J. Dent. Res., 66 (1), pp. 29-32; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) Int. J. Biomater., , (2012, Article ID 854539 8 pages); Liang, J.Z., Toughening and reinforcing in rigid inorganic particulate filled poly(propylene): A review (2001) J. Appl. Polym. Sci., 83 (7), pp. 1547-1555; Kinney, J.H., Balooch, M., Marshall, G.W., Marshall, S.J., A micromechanics model of the elastic properties of human dentine (1999) Archives of Oral Biology, 44 (10), pp. 813-822. , DOI 10.1016/S0003-9969(99)00080-1, PII S0003996999000801; Staines, M., Robinson, W.H., Hood, J.A.A., Spherical indentation of tooth enamel (1981) J. Mater. Sci., 16, pp. 2551-2556; Hsiung, L.L., Depth dependence of the mechanical properties of human enamel by nanoindentation (2006) J. Biomed. Mater. Res. A, pp. 1-28; He, L.H., Swain, M.V., Enamel - A "metallic-like" deformable biocomposite (2007) J. Dent., 35, pp. 431-437; Waters, N.E., Some mechanical and physical properties of teeth (1980) Symp. Soc. Exp. Biol., 34, pp. 99-135; Kinney, J.H., Marshall, S.J., Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature (2003) Crit. Rev. Oral Biol. Med., 14 (1), pp. 13-29; Marshall, S.J., Balooch, M., Habelitz, S., Balooch, G., Gallagher, R., Marshall, G.W., The dentin - enamel junction - A natural, multilevel interface (2003) Journal of the European Ceramic Society, 23 (15), pp. 2897-2904. , DOI 10.1016/S0955-2219(03)00301-7; Fong, H., Sarikaya, M., White, S.N., Snead, M.L., Nanomechanical properties profiles across dentin-enamel junction of human incisor teeth (2000) Mater. Sci. Eng. C, 7 (1), pp. 119-128; Hudson, A., Harrison, J.P., (1997) Engineering Rock Mechanics An Introduction to the Principles, 1, p. 444. , Elsevier Science Ltd Oxford; Bajaj, D., Arola, D., Role of prism decussation on fatigue crack growth and fracture of human enamel (2009) Acta Biomater., 5, pp. 3045-3056; Nalla, R.K., Kinney, J.H., Ritchie, R.O., Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms (2003) Biomaterials, 24 (22), pp. 3955-3968. , DOI 10.1016/S0142-9612(03)00278-3; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of root dentin under Sjögren's syndrome (2011) Mater. Lett., 65, pp. 2435-2438; Zaytsev, D., Grigoriev, S., Antonova, O., Panfilov, P., Deformation and fracture of human dentin (2011) Deform. Fract. Mater., 6, pp. 37-43. , (in Russian); Zaytsev, D., Grigoriev, S., Mushina, O., Panfilov, P., Deformation and fracture of human enamel (2011) Deform. Fract. Mater., 12, pp. 24-30. , (in Russian); Dong, X.D., Ruse, N.D., Fatigue crack propagation path across the dentinoenamel junction complex in human teeth (2003) Journal of Biomedical Materials Research - Part A, 66 (1), pp. 103-109; Imbeni, V., Kruzic, J.J., Marshall, G.W., Marshall, S.J., Ritchie, R.O., The dentin-enamel junction and the fracture of human teeth (2005) Nature Materials, 4 (3), pp. 229-232. , DOI 10.1038/nmat1323; Bechtle, S., Fett, T., Rizzi, G., Habelitz, S., Klocke, A., Schneider, G.A., Crack arrest teeth at the dentinoenamel junction caused by elastic modulus mismatch (2010) Biomaterials, 31, pp. 4238-4247 |