Deformation behavior of human dentin under uniaxial compression / Zaytsev D., Grigoriev S., Panfilov P. // International Journal of Biomaterials. - 2012. - V. , l. .

ISSN:
16878787
Type:
Article
Abstract:
Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate. © 2012 Dmitry Zaytsev et al.
Author keywords:
Index keywords:
нет данных
DOI:
10.1155/2012/854539
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858319612&doi=10.1155%2f2012%2f854539&partnerID=40&md5=5c81b823bc445762c5f102cd50e40696
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 854539
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858319612&doi=10.1155%2f2012%2f854539&partnerID=40&md5=5c81b823bc445762c5f102cd50e40696
Affiliations Ural State University, Lenin Avenue 51, Ekaterinburg 620000, Russian Federation; Ural State Medical Academy, Repin Street 3, Ekaterinburg, 620219, Russian Federation
References Waters, N.E., Some mechanical and physical properties of teeth (1980) Symposia of the Society for Experimental Biology, 34, pp. 99-135; He, L.H., Swain, M.V., Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics (2008) Journal of the Mechanical Behavior of Biomedical Materials, 1 (1), pp. 18-29. , DOI 10.1016/j.jmbbm.2007.05.001, PII S1751616107000082; Graig, R.G., Peyton, F.A., Elastic and mechanical properties of human dentin (1958) Journal of Dental Research, 37 (4), pp. 710-718; Stanford, J.W., Weigel, K.V., Paffenberger, G.C., Sweeney, W.T., Compressive properties of hard tooth tissues and some restorative materials (1958) Journal of the American Dental Association, 57, pp. 487-495; Kinney, J.H., Balooch, M., Marshall, G.W., Marshall, S.J., A micromechanics model of the elastic properties of human dentine (1999) Archives of Oral Biology, 44 (10), pp. 813-822. , DOI 10.1016/S0003-9969(99)00080-1, PII S0003996999000801; Bechtle, S., Fett, T., Rizzi, G., Habelitz, S., Klocke, A., Schneider, G.A., Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch (2010) Biomaterials, 31 (14), pp. 4238-4247; Kruzic, J.J., Nalla, R.K., Kinney, J.H., Ritchie, R.O., Mechanistic aspects of in vitro fatigue-crack growth in dentin (2005) Biomaterials, 26 (10), pp. 1195-1204. , DOI 10.1016/j.biomaterials.2004.04.051, PII S0142961204005666; Lyles, R.L., Wilsdorf, H.G.F., Microcrack nucleation and fracture in silver crystals (1975) Acta Metallurgica, 23 (2), pp. 269-277; Robertson, I.M., Birnbaum, H.K., Hvem study of hydrogen effects on the deformation and fracture of nickel (1986) Acta Metallurgica, 34 (3), pp. 353-366. , DOI 10.1016/0001-6160(86)90071-4; Riande, E., Diaz-Calleja, R., Prolongo, M.G., Masegosa, R.M., Saldm, C., (2000) Polymer Viscoelasticity: Stress and Strain in Practice, , New York, NY, USA Marcel Dekker; Brydson, J.A., (1999) Plastics Materials, , 7th Oxford, UK Butterworth-Heinemann; Kinney, J.H., Marshall, S.J., Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature (2003) Critical Reviews in Oral Biology and Medicine, 14 (1), pp. 13-29; Peyton, F.A., Mahler, D.B., Hershanov, B., Physical properties of dentin (1952) Journal of Dental Research, 31 (3), pp. 366-370; Watts, D.C., El Mowafy, O.M., Grant, A.A., Temperature-dependence of compressive properties of human dentin (1987) Journal of Dental Research, 66 (1), pp. 29-32; Arola, D., Reid, J., Cox, M.E., Bajaj, D., Sundaram, N., Romberg, E., Transition behavior in fatigue of human dentin: Structure and anisotropy (2007) Biomaterials, 28 (26), pp. 3867-3875. , DOI 10.1016/j.biomaterials.2007.05.001, PII S0142961207003808; Nalla, R.K., Kinney, J.H., Ritchie, R.O., Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms (2003) Biomaterials, 24 (22), pp. 3955-3968. , DOI 10.1016/S0142-9612(03)00278-3; Betten, J., (2005) Creep Mechanics, , 2nd Heidelberg, Germany Springer; Low, I.M., Duraman, N., Fulton, J., Tezuka, N., Davies, I.J., A comparative study of the microstructure -property relationship inhuman adult and baby teeth (2005) Ceramic Engineering and Science Proceedings, 26 (6), pp. 145-152. , Advances in Bioceramics and Biocomposites. A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites; Stanford, J.W., Weigel, K.V., Paffenberger, G.C., Sweeney, W.T., Compressive properties of hard tooth tissues and some restorative materials (1960) Journal of the American Dental Association, 60, pp. 746-751; Kinney, J.H., Oliveira, J., Haupt, D.L., Marshall, G.W., Marshall, S.J., The spatial arrangement of tubules in human dentin (2001) Journal of Materials Science: Materials in Medicine, 12 (8), pp. 743-751. , DOI 10.1023/A:1011232912734; Kinney, J.H., Gladden, J.R., Marshall, G.W., Marshall, S.J., So, J.H., Maynard, J.D., Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin (2004) Journal of Biomechanics, 37 (4), pp. 437-441. , DOI 10.1016/j.jbiomech.2003.09.028, PII S0021929003003464
Correspondence Address Panfilov, P.; Ural State University, Lenin Avenue 51, Ekaterinburg 620000, Russian Federation; email: peter.panfilov@usu.ru
Language of Original Document English
Abbreviated Source Title Int. J. Biomater.
Source Scopus