References |
Aly, A.A., Mohamed, A.A., The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro (2012) Austral J Crop Sci, 6 (3), pp. 541-549; Basile, A., Sorbo, S., Conte, B., Cobianchi, R.C., Trinchella, F., Capasso, C., Carginale, V., Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes (2012) Internatonal J Phytoremed, 14, pp. 374-387; Bates, L.S., Rapid determination of free proline for water stress studies (1973) Plant and Soil, 39, pp. 205-207; Beauchamp, C., Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrilamide gels (1971) Anal Biochem, 44, pp. 276-287; Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254; Chance, B., Maehly, A.C., Assay catalase and peroxidase (1955) Methods in Enzymology, pp. 764-775. , N.Y., N.Y.,: Acad. Press; Chukina, N.V., Borisova, G.G., Structural and Functional Induces of Higher Aquatic Plants from Habitats Differing in Levels of Anthropogenic Impact (2010) Inland Water Biol, 3, pp. 44-50; Cobbett, C., Goldsbrough, P., Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis (2002) Annu Rev Plant Biol, 53, pp. 159-182; Ellman, G.L., Tissue sulfhydryl groups (1959) Arch Biochem Biophys, 82, pp. 70-77; Ermachenko, L.A., Ermachenko, V.M., Atomic-absorption analysis with a graphite furnace [in Russian] (1999), p. 219. , In: Podunova L. G., editors PAIMS, PAIMS,: Moscow; Esposito, S., Sorbo, S., Conte, B., Basile, A., Effects of heavy metals on ultrastructure and hsp70s induction in the aquatic moss Leptodictyum riparium Hedw (2012) Internatonal J Phytoremed, 14, pp. 443-455; Fang, W.-C., Kao, C.H., Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc (2000) Plant Sci, 158, pp. 71-76; Favas, P.J.C., Pratas, J., Prasad, M.N.V., Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication (2012) Sci Total Env, 433, pp. 390-397; Fiske, C.H., Subbarow, Y., The colorimetric determination of phosphorus (1925) J Biol Chem, 66, pp. 375-400; Garbisu, C., Alkorta, I., Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment (2001) Bioresource Technol, 77, pp. 229-236; Huang, G.-Y., Wang, Y.-S., Sun, C.-C., Dong, J.-D., Sun, Z.-X., The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) (2010) Oceanolog Hydrobiolog Stud, 39 (1), pp. 11-25; Inze, D., van Montagu, M., Oxidative stress in plants (1995) Curr Opin Biotechnol, 5, pp. 208-219; Jocsak, I., Vegvari, G., Droppa, M., Heavy metal detoxification by organic acids in barley seedlings (2005) Acta Biologica Szegediensis, 49, pp. 99-101; Kachout, S.S., Mansoura, A.B., Leclerc, J.C., Mechergui, R., Rejeb, M.N., Ouerghi, Z., Effects of heavy metals on antioxidant activities of Atriplex hortensis and A. rosea (2009) J Food, Agriculture and Environ, 7, pp. 938-945; Kapitonova, O.A., Specific anatomical features of vegetative organs in some macrophyte species under conditions of industrial pollution (2002) Rus J Ecology, 33, pp. 59-61; Kearney, M.A., Zhu, W., Growth of three wetland plant species under single and multi-pollutant wastewater conditions (2012) Ecological Engineering, 47, pp. 214-220; Keskinkan, O., Goksu, M.Z.L., Basibuyuk, M., Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum) (2004) Bioresource Technol, 92, pp. 197-200; Klumpp, A., Bauer, K., Franz-Gerstein, C., de Menezes, M., Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil) (2002) Environ Internat, 28, pp. 165-171; Kornberg, A., Rao, N.N., Ault-Riche, D., Inorganic polyphosphate: a molecule of many functions (1999) Annu Rev Biochem, 68, pp. 89-125; Kumar, G.P., Prasad, M.N.V., Cadmium adsorption and accumulation by Ceratophyllum demersum L.: a fresh water macrophyte (2004) Eur J Miner Proces Envir Prot, 4, pp. 95-100; Lukina, L.F., Smirnova, N.N., (1988) Fiziologiya vysshikh vodnykh rastenii (Physiology of the higher aquatic plants) [in Russian], p. 186. , Kiev, Kiev,: Naukova dumka; Malec, P., Maleva, M.G., Prasad, M.N.V., Strzałka, K., Identification and Characterization of Cd-Induced Peptides in Egeria densa (Water Weed): Putative Role in Cd Detoxification (2009) Aquat Toxicol, 95, pp. 213-221; Malec, P., Mysliwa-Kurdziel, B., Prasad, M.N.V., Waloszek, A., Strzałka, K., Role of aquatic macrophytes in biogeochemical cycling of heavy metals-relevance to soil: sediment continuum detoxification and ecosystem health (2011) Detoxification of Heavy Metals, pp. 345-368. , In: Sherameti I., Varma A., editors, Springer-Verlag Berlin Heidelberg; Maleva, M.G., Nekrasova, G.F., Borisova, G.G., Chukina, N.V., Ushakova, O.S., Effect of Heavy metals on photosynthetic apparatus and antioxidant status of Elodea (2012) Rus J Plant Physiol, 59, pp. 190-197; Márquez-García, B., Fernández-Recamales, M., Córdoba, F., Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis (2012) J Botany, 2012, pp. 1-6; Martinez, E.A., Determination of selected heavy metal concentrations and distribution in a southwestern stream using macrophytes (2011) Ecotoxicol Environ Safety, 74, pp. 1504-1511. , Chemanji Shu-Nyamboli; Mazej, Z., Germ, M., Trace element accumulation and distribution in four aquatic macrophytes (2009) Chemosphere, 74, pp. 642-647; Miretzky, P., Saralegui, A., Cirelli, A.F., Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina) (2004) Chemosphere, 57, pp. 997-1005; Mishra, V.K., Tripathi, B.D., Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes (2008) Bioresource Technol, 99, pp. 7091-7097; Mittler, R., Oxidative stress, antioxidants and stress tolerance (2002) Trends Plant Sci, 7, pp. 405-410; Mokronosov, A.T., Borzenkova, R.A., Method of quantitative assessment of the structure and functional activity of photosynthesizing tissues and organs (1978) Tr Prikl Bot Genet Sel., 61, pp. 119-133; Monferrán, M.V., Pignata, M.L., Wunderlin, D.A., Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper (2012) Environ Pollut, 161, pp. 15-22; Montoro, P., Braca, A., Pizza, C., De Tommasi, N., Structure-antioxidant activity relationships of flavonoids isolated from different plant species (2004) Food Chem, 92, pp. 349-355; Noctor, G., Foyer, C.H., Ascorbate and glutathione: keeping active oxygen under control (1998) Ann Rev Plant Physiol Plant Mol Biol, 49, pp. 249-279; Oliva, S.R., Bargagli, R., Monaci, F., Valde's, B., Mingorance, M.D., Leidi, E.O., Stress responses of Erica andevalensis Cabezudo & Rivera plants induced by polluted water from Tinto River (SW Spain) (2009) Ecotoxicology, 18, pp. 1058-1067; Paczkowska, M., Kozłowska, M., Goliński, P., Oxidative Stress Enzyme Activity in Lemna minor L. Exposed to Cadmium and Lead (2007) Acta Biolog Cracov. Series Bot, 49 (2), pp. 33-37; Pett, L.B., Changes in the ascorbic acid and glutathione contents of stored and sprouting potatoes (1936) Biochem J, 30, pp. 1228-1232; Polley, J.R., Colorimetric Determination of Nitrogen in Biological Materials (1954) Anal Chem, 26 (9), pp. 1523-1524; Prasad, M.N.V., Aquatic plants for phytotechnology (2007) Environmental Bioremediation Technologies, pp. 259-274. , In: Singh S N, Tripathi R D, editors Springer; Prasad, M.N.V., Greger, M., Smith, B.N., Aquatic macrophytes (2001) Metals in the Environment - Analysis by biodiversity., pp. 259-288. , New York, New York,: Marcel Dekker Inc; Pratas, J., Favas, P.J.C., Paulo, C., Rodrigues, N., Prasad, M.N.V., Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal (2012) Internat Journal of Phytoremediation, 14, pp. 221-234; Rogozhin, V.V., (2006) Prakticum po biologicheskoy himii (Practical work on Biological Chemistry) [in Russian], p. 256. , St. Petersburg, St. Petersburg,: Lan; Rozentsvet, O.A., Mursaeva, S.V., Guschina, I.A., The role of membrane lipids in the resistance of clapsing-leaved pondweed (Potamogeton perfoliatus L.) to excess of cadmium in water (2005) Izvestia Rus Acad of Sci, 2, pp. 232-239; Titov, A.F., Talanova, V.V., Kaznina, N.M., Laydinen, G.F., (2007) Ustoichivost' rastenii k tyazhelym metallam. (Resistance of plants to heavy metals) [in Russian], p. 172. , Petrozavodsk, Petrozavodsk,: The scientific center of Karelia; Teisseire, H., Guy, V., Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor) (2000) Plant Sci, 153, pp. 65-72; Thornalley, P.J., Vasak, M., Possible role for metallothioneins in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals (1985) Biochim Biophys Acta, 827 (1), pp. 36-44; Vardanyan, L.G., Ingole, B.S., Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems (2006) Environ Internat, 32, pp. 208-218; Welschen, R., Bergkotte, M., Ecophysiology. Handbook of methods (1994) Department of plant ecology and Evolutionary Biology, Utrecht University; Wong, H.L., Sakamoto, T., Kawasaki, T., Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in Rice (2004) Plant Physiol, 135, pp. 1447-1456; Zurayk, R., Sukkariyah, B., Baalbaki, R., Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution (2001) Water, Air and Soil Pollut, 127, pp. 373-388 |