A mathematical modeling and validation study of NOx emissions in metal processing systems / Malikov G.K., Lisienko V.G., Malikov K.Y., Viskanta R. // ISIJ International. - 2002. - V. 42, l. 10. - P. 1175-1181.

ISSN:
09151559
Type:
Article
Abstract:
The model is based on separate calculations of prompt and thermal NOx and is accomplished using CFD code for flow, temperature and concentration fields in the combustion system. Thermal NOx is calculated with the Zeldovich model. The prompt NOx is considered to be independent of residence time and is computed with detailed kinetic data based GRI-Mech version 2.11 and CHEMKIN code by assuming that every computational cell is a perfectly stirred reactor. Three main parameters are considered to be critical in NOx production: 1) air equivalence ratio, 2) temperature, and 3) mixture dilution with combustion products. All of these parameters and methane oxidation reaction rates are readily available in every cell of the CFD domain. Once NOx emission index is computed by GRI-Mech in every cell, NOx reaction rate is easily evaluated by multiplying it with the methane oxidation reaction rate. The NOx concentration field is then calculated using known CFD transport parameters. Comparison of model predictions with measurements is made for a wide range of industrial natural gas-fired burners installed in combustion chambers and furnaces. The flame temperatures were in the range of 1 400-2 100 K, velocities were in the range of 10-200 m/s, burner nozzles were in the range of diameters 5-550 mm, and then combustion chamber or furnace internal equivalent size in the range of 0.05-3.5 m. Good agreement has been obtained in most cases.
Author keywords:
Combustion systems; Mathematical modeling; Metal processing; NOx emissions
Index keywords:
Chemical reactors; Combustion; Combustion chambers; Computational fluid dynamics; Gas emissions; Mathematical models; Mixtures; Temperature; Combustion systems; Industrial natural gas fired burners; M
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036926178&partnerID=40&md5=cc9c6e15964cffdb004b4ec076f9807f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036926178&partnerID=40&md5=cc9c6e15964cffdb004b4ec076f9807f
Affiliations Ural State Technical University, Ekaterinburg 620002, Russian Federation; School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
Author Keywords Combustion systems; Mathematical modeling; Metal processing; NOx emissions
References Miller, J.A., Bowman, C.T., (1989) Prog. Energy Combust. Sci., 15, p. 287; Bochkov, M.V., Lovachov, L.A., Chetverushkin, B.N., (1992) Mathematical Modelling, 4 (6), p. 4; Gore, L.J., Viskanta, R., (2000) Combustion and Flame, 121, p. 262; Zeldovich, J.B., Sadovnikov, P.J., Frank-Kamenetski, D.A., (1947) Nitrogen Oxidation Under Combustion, p. 64. , Publishing House of the Academy of Sciences, Moscow; Carvalho, M.G.M.S., Semiao, V., Lockwood, F.C., Papadopoulos, C., (1990) J. Inst. Energy, 6, p. 39; Ramamurthy, H., Ramadhyani, S., Sullivan, P.F., Viskanta, R., (1994) Heat Transfer in Industrial Furnaces, , Gas Research Institute Report No. GRI-94/0355; Peters, N., Kee, R.J., (1987) Combustion and Flame, 68, p. 17; Glarborg, P., Lillekeie, L.I., Buggstoyl, S., Magnussen, B.F., Kilpinen, P., Hupa, M., (1992) 24th Symp. (International) on Combustion, p. 889. , The Combustion Institute, Pittsburgh, PA; Bilger, R.W., Starner, S.H., Kee, R.J., (1990) Flames Combustion and Flame, 80, p. 135; Dupont, V., Pourkashanian, M., Williams, A., Wooley, R., (1993) Fuel, 72, p. 497; Al-Fawaz, A.D., Dearden, L.M., Hedley, J.T., (1994) 25th Symp. (International) on Combustion, the Combustion Institute, Pittsburgh, PA, p. 1027; Turns, S.R., (1995) Prog. Energy Combust. Sci., 21, p. 361; Rokke, N.A., Husted, J.E., Sonju, O.K., (1994) Combustion and Flame, 97, p. 88; Turns, S.R., Myhr, F.H., (1991) Combustion and Flame, 87, p. 319; Turns, S.R., Myhr, F.H., Bandaru, R.V., Mand, E.R., (1993) Combustion and Flame, 93, p. 255; Lyle, K.H., Tseng, L.K., Gore, J.P., Laurendeau, N.M., (1999) Combustion and Flame, 116, p. 627; Broadwell, J.E., Lutz, A.E., (1998) Combustion and Flame, 114, p. 319; Polifke, W., Dobbeling, K., Sattelmayer, T., Nicol, D.G., Malte, P.G., (1996) ASME J. Eng. Gas Turbines and Power, 118, p. 765; Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardner W.C., Jr., Lissianski, V., Smith, G.P., Golden, D.M., Golenberg, M., (2002) GRI-Mech 2.11, , http://www.me.berkeley.edu/gri-mech, accessed on August 26; Patankar, S.V., (1980) Numerical Heat and Fluid Flow, , Hemisphere, New York; Khalil, E.E., Spalding, D.B., Whitelaw, J.H., (1975) Int. J. Heat Mass Transfer, 18, p. 775; Magnussen, B.F., Hjertager, B.H., (1976) 16th Symp. (International) on Combustion, the Combustion Institute, Pittsburgh, PA, p. 719; Lisienko, V.G., Malikov, G.K., Malikov, Y.K., Medvedev, I.Y., Lobanov, D.D., (1996) Stal, (6), p. 45; Lisienko, V.G., Malikov, G.K., Malikov, Yu.K., (1992) Numer. Heat Transfer B, 22 (1), p. 1; Masters, J., (1974) Metall. Met. Forming, 41 (1), p. 13; Bergaus, A.L., Rosenfeld, E.I., Combustion efficiency enhancement in heat and soak processing (1984), Nedra, Leningrad; Dailey, E., (1994) Metall. Furnaces Suppl., 61 (12). , FUS1, FUS4, FUS6; Soroka, B.S., Gurevich, N.A., Sigal, I.J., Tsvetkov, S.V., Kutasevich, I.V., (1978) Teploenergetika, 97 (1), p. 45; Malikov, G.K., Lisienko, V.G., Lobanov, D.L., Malikov, Yu.K., Viskanta, R., Fedorov, A., (1999) J. Inst. Energy, 72, p. 2; Malikov, G.K., Lobanov, D.L., Lisienko, V.G., Malikov, Y.K., Viskanta, R., Fedorov, A., (2001) Int. J. Heat Mass Transfer, 44, p. 1751
Correspondence Address Malikov, G.K.; Ural State Technical University, Ekaterinburg 620002, Russian Federation
CODEN IINTE
Language of Original Document English
Abbreviated Source Title ISIJ Int
Source Scopus