H-Theorem and Thermodynamic Efficiency of the Radiation Work Inducing a Chemically Nonequilibrium State of Matter / Seleznev V.D., Buchina O. // Journal of Statistical Physics. - 2015. - V. 159, l. 6. - P. 1477-1494.

ISSN:
00224715
Type:
Article
Abstract:
The Sun’s radiation is a source of origin and maintenance of life on Earth. The Sun-Earth system is a thermodynamic machine transforming radiation into useful work of living organisms. Despite the importance of efficiency for such a thermodynamic machine, the analysis of its efficiency coefficient (EC) available in the literature has considerable shortcomings: As is noted by the author of the classical study on this subject (Oxenius in J Quant Spectrosc Radiat Transf 6:65–91, 1996), the second law of thermodynamics is violated for the radiation beam (without direction integration). The typical thermodynamic analysis of the interaction between radiation and matter is performed assuming an equilibrium of the chemical composition thereof as opposed to the radiation work in the biosphere (photosynthesis), which usually occurs under the conditions of a significant deviation of the active substance’s composition from its equilibrium values. The “black box” model (Aoki in J Phys Soc Jpn 52:1075–1078, 1983) is traditionally used to analyze the work efficiency of the Sun-Earth thermodynamic machine. It fails to explain the influence of many internal characteristics of the radiation-matter interaction on the process’s EC. The present paper overcomes the above shortcomings using a relatively simple model of interaction between anisotropic radiation and two-level molecules of a rarefied component in a buffer substance. © 2015, Springer Science+Business Media New York.
Author keywords:
Buffer substance; H-Theorem; Radiation; Thermodynamical efficiency
Index keywords:
нет данных
DOI:
10.1007/s10955-015-1224-y
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929949686&doi=10.1007%2fs10955-015-1224-y&partnerID=40&md5=12ffc9a679f6bf970338b08aee10e8e8
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929949686&doi=10.1007%2fs10955-015-1224-y&partnerID=40&md5=12ffc9a679f6bf970338b08aee10e8e8
Affiliations Institute of Physics and Technology, Ural Federal University, 19 Mira, Yekaterinburg, Russian Federation
Author Keywords Buffer substance; H-Theorem; Radiation; Thermodynamical efficiency
References Planck, M., (1959) The Theory of Heat Radiation, , Dover, New York; Wildt, R., Radiative transfer and thermodynamics (1956) Astrophys. J., 123 (1), pp. 107-116; Oxenius, J., Radiative transfer and irreversibility (1966) J. Quant. Spectrosc. Radiat. Transf., 6, pp. 65-91; Kroll, W., Properties of the entropy production due to radiative transfer (1967) J. Quant. Spectrosc. Radiat. Transf., 7, pp. 715-723; Shimooda, H., Irreversibility in radiative transfer (1968) Publ. Astron. Soc. Jpn, 20 (3), pp. 337-345; Sen, K.K., Effect of background continuum an entropy production in radiative transfer (1967) J. Quant. Spectrosc. Radiat. Transf., 7 (2), pp. 517-523; Essex, C., Radiation and the violation of bilinearity in the irreversible thermodynamics of irreversible processes (1984) Planet. Space Sci., 32, pp. 1035-1043; Callies, U., Herbert, F., Radiative processes and non-equilibrium thermodynamics (1988) J. Appl. Math. Phys. (ZAMP), 39, pp. 242-266; Izakov, M.N., Self-organization and information for planets and ecosystems (1997) Phys. Uspekhi, 40, pp. 1035-1042; Aoki, I., Entropy production on the earth and other planets of the solar system (1983) J. Phys. Soc. Jpn, 52, pp. 1075-1078; Goody, R., Sources and sinks of climate entropy (2000) Quart. J.R. Met. Soc, 126 (566), pp. 1953-1970; Weiss, W., The balance of entropy on earth (1996) Continuum Mech. Thermodyn., 8, pp. 37-51; Zakharov, V.I., Imasu, R., Gribanov, K.G., Zakharov, S.V., Free energy balance at the upper boundary of the atmosphere (2008) Atmos. Ocean. Optics, 21 (2), pp. 211-218; Paltridge, G.W.: Global dynamics and climate—a system of minimum entropy exchange. Quart. J.R. Met. Soc. 101(429), 475–484; Paltridge, G.W.: The steady-state format of global climate. Quart. J.R. Met. Soc. 104(442), 927–945; Heer, C.V., (1972) Statistical Mechanics, Kinetic Theory, and Stochastic Processes, , Academic press, New York; Eu, B.C., Mao, K., Kinetic theory approach to irreversible thermodynamics of radiation and matter (1992) Physica A, 180 (1-2), pp. 65-114; van Enk, S.J., Nienhuis, G., Entropy production and kinetic effects of light (1992) Phys. Rev. A, 46 (2), pp. 1438-1448; de Groot, S.R., Mazur, P., (1962) Non-Equilibrium Thermodynamics, , North-Holland, Amsterdam; Seleznev, V.D., Tokmantsev, V.I., Nonequilibrium Statistical Thermodynamics of Dilute Gases (2005) Yekaterinburg, UrO RAN, p. 343; Landsberg, P.T., Tonge, G., Thermodynamic energy conversion efficiencies (1980) J. Appl. Phys, 51 (6), pp. R1-R20; Albarran-Zavala, E., Angulo-Brown, F., A simple thermodynamic analysis of photosynthesis (2007) Entropy, 9 (3), pp. 152-168; Melkikh, A.V., Seleznev, V.D., Chesnokova, O.I., Analytical model of ion transport and conversion of light chloroplasts (2010) J. Theor. Biol, 264 (2), pp. 702-710
Correspondence Address Seleznev, V.D.; Institute of Physics and Technology, Ural Federal University, 19 Mira, Russian Federation; email: selvd@yandex.ru
Publisher Springer New York LLC
Language of Original Document English
Abbreviated Source Title J. Stat. Phys.
Source Scopus