Variations of oxygen-18 in West Siberian precipitation during the last 50 years / Butzin M., Werner M., Masson-Delmotte V., Risi C., Frankenberg C., Gribanov K., Jouzel J., Zakharov V.I. // Atmospheric Chemistry and Physics. - 2014. - V. 14, l. 11. - P. 5853-5869.

ISSN:
16807316
Type:
Article
Abstract:
Global warming is associated with large increases in surface air temperature in Siberia. Here, we apply the isotope-enabled atmospheric general circulation model ECHAM5-wiso to explore the potential of water isotope measurements at a recently opened monitoring station in Kourovka (57.04° N, 59.55° E) in order to successfully trace climate change in western Siberia. Our model is constrained to atmospheric reanalysis fields for the period 1957-2013 to facilitate the comparison with observations of δD in total column water vapour from the GOSAT satellite, and with precipitation δ18O measurements from 15 Russian stations of the Global Network of Isotopes in Precipitation. The model captures the observed Russian climate within reasonable error margins, and displays the observed isotopic gradients associated with increasing continentality and decreasing meridional temperatures. The model also reproduces the observed seasonal cycle of δ18O, which parallels the seasonal cycle of temperature and ranges from -25 &permil; in winter to 5 &permil; in summer. Investigating West Siberian climate and precipitation δ18O variability during the last 50 years, we find long-term increasing trends in temperature and δ18O, while precipitation trends are uncertain. During the last 50 years, winter temperatures have increased by 1.7 °C. The simulated long-term increase of precipitation δ18O is at the detection limit (<1 &permil; per 50 years) but significant. West Siberian climate is characterized by strong interannual variability, which in winter is strongly related to the North Atlantic Oscillation. In winter, regional temperature is the predominant factor controlling δ18O variations on interannual to decadal timescales with a slope of about 0.5 ‰ °C-1. In summer, the interannual variability of δ18O can be attributed to short-term, regional-scale processes such as evaporation and convective precipitation. This finding suggests that precipitation δ18O has the potential to reveal hydrometeorological regime shifts in western Siberia which are otherwise difficult to identify. Focusing on Kourovka, the simulated evolution of temperature, δ18O and, to a smaller extent, precipitation during the last 50 years is synchronous with model results averaged over all of western Siberia, suggesting that this site will be representative to monitor future isotopic changes in the entire region. © 2014 Author(s).
Author keywords:
Index keywords:
air temperature; annual variation; atmospheric chemistry; atmospheric general circulation model; climate change; decadal variation; global warming; GOSAT; isotopic composition; North Atlantic Oscillat
DOI:
10.5194/acp-14-5853-2014
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902436651&doi=10.5194%2facp-14-5853-2014&partnerID=40&md5=d1574edc08d30ad71726b035b842cf9e
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902436651&doi=10.5194%2facp-14-5853-2014&partnerID=40&md5=d1574edc08d30ad71726b035b842cf9e
Affiliations Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Climate and Environmental Physics Laboratory, Ural Federal University, Yekaterinburg, Russian Federation; Laboratoire des Sciences du Climat et de l'Environnement, IPSL (CEA, CNRS, UVSQ), Orme des Merisiers, Gif-sur-Yvette, France; Laboratoire de Météorologie Dynamique, IPSL, CNRS, Paris, France; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
References Araguas-Araguas, L., Froelich, K., Rozanski, K., Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture (2000) Hydrol. Process, 14, pp. 1341-1355. , doi:10.1002/1099-1085(20000615) 14:81341::AIDHYP9833.0.CO;2-Z; Baldini, L.M., McDermott, F., Foley, A.M., Baldini, J.U.L., Spatial variability in the European winter precipitation 18O- NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene (2008) Geophys. Res. Lett., 35, pp. L04709. , doi:10.1029/2007GL032027; Bengtsson, L., Hodges, K.I., Koumoutsaris, S., Zahn, M., Keenlyside, N., The changing atmospheric water cycle in Polar Regions in a warmer climate (2011) Tellus A, 63, pp. 907-920. , doi:10.1111/j.1600-0870.2011.00534.x; Berkelhammer, M., Hu, J., Bailey, A., Noone, D.C., Still, C.J., Barnard, H., Gochis, D., Turnipseed, A., The nocturnal water cycle in an open-canopy forest (2013) J. Geophys. Res. Atmos., 118, pp. 10225-10242. , doi:10.1002/jgrd.50701; Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kallberg, P., Simmons, A., (2011) The ERA-Interim Archive Version 2.0, , ERA Report Series No. 1, European Centre for Medium-Range Weather Forecasts, Reading, UK; Boesch, H., Deutscher, N.M., Warneke, T., Byckling, K., Cogan, A.J., Griffith, D.W.T., Notholt, J., Wang, Z., HDO/H2O ratio retrievals from GOSAT, Atmos (2013) Meas. Tech., 6, pp. 599-612. , doi:10.5194/amt-6-599-2013; Craig, H., Isotopic variations in meteoric waters (1961) Science, 133, pp. 1702-1703. , doi:10.1126/science.133.3465.1702; Dansgaard, W., The abundance of O18 in atmospheric water and water vapour (1953) Tellus, 5, pp. 461-469. , doi:10.1111/j.2153- 3490.1953.tb01076.x; Dansgaard, W., Stable isotopes in precipitation (1964) Tellus, 16, pp. 436-468. , doi:10.1111/j.2153-3490.1964.tb00181.x; Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, F., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system (2011) Q. J. Roy. Meteor. Soc., 137, pp. 553-597. , doi:10.1002/qj.828; Field . R, D., Observed and modeled controls on precipitation delta O-18 over Europe: From local temperature to the Northern Annular Mode (2010) J. Geophys. Res., 115, pp. D12101. , doi:10.1029/2009JD013370; Frankenberg, C., Wunch, D., Toon, G., Risi, C., Scheepmaker, R., Lee, J.-E., Wennberg, P., Worden, J., Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra (2013) Atmos. Meas. Tech., 6, pp. 263-274. , doi:10.5194/amt-6- 263-2013; Fukutomi, Y., Masuda, K., Yasunari, T., Role of storm track activity in the interannual seesaw of summer precipitation over northern Eurasia (2004) J. Geophys. Res., 109, pp. D02109. , doi:10.1029/2003JD003912; Gribanov, K., Jouzel, J., Bastrikov, V., Bonne, J.-L., Breon, F.-M., Butzin, M., Cattani, O., Zakharov, V., Developing a Western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing) (2014) Atmos. Chem. Phys. Discuss., , in press; Gryazin, V., Risi, C., Jouzel, J., Kurita, N., Worden, J., Frankenberg, C., Bastrikov, V., Stukova, O., The added value of water isotopic measurements for understanding model biases in simulating the water cycle over Western Siberia (2014) Atmos. Chem. Phys. Discuss., 14, pp. 4457-4503. , doi:10.5194/acpd- 14-4457-2014; Guan, H., Zhang, X., Skrzypek, G., Sun, Z., Xu, X., Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources (2013) J. Geophys. Res. Atmos., 118, pp. 1123-1138. , doi:10.1002/jgrd.50137; Haese, B., Werner, M., Lohmann, G., Stable water isotopes in the coupled atmosphere-land surface model ECHAM5- JSBACH (2013) Geosci. Model Dev., 6, pp. 1463-1480. , doi:10.5194/gmd- 6-1463-2013; Hagemann, S., (2002) An Improved Land Surface Parameter Dataset for Global and Regional Climate Models. Report 336, , Max Planck Institute for Meteorology, Hamburg, Germany; Hagemann, S., Arpe, K., Roeckner, E., Evaluation of the hydrological cycle in the ECHAM5 model (2006) J. Clim., 19, pp. 3810-3827. , doi:10.1175/JCLI3831.1; Halpert, M.S., Bell, G.D., Climate assessment for 1996 (1997) Bull. Am. Meteorol. Soc., 78, p. 1038. , doi:10.1175/1520- 0477(1997)078<1038:CAF>2.0.CO;2; Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, Y., Dentener, F.J., Zhai, P.M., Observations: Atmosphere and surface (2014) Climate Change 2013: The Physical Science Basis. Contribution of Working Group i to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 159-254. , edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; Hoffmann, G., Werner, M., Heimann, M., Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years (1998) J. Geophys. Res., 103, pp. 16871-16896. , doi:10.1029/98JD00423; Hurrell, J.W., Deser, C., North Atlantic climate variability: The role of the North Atlantic Oscillation (2009) J. Mar. Syst., 78, pp. 28-41. , doi:10.1016/j.jmarsys.2008.11.026; Hurrell, J., (2013), https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic- oscillation-nao-index-station-based, and National Center for Atmospheric Research Staff (Eds.): The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based), retrieved from (last access: 16 September 2013); (2013), http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html, IAEA/WMO: Global Network of Isotopes in Precipitation: The GNIP Database, iaea.org [online], available from (last access: 3 July 2013); Nakicenovic, N., Swart, R., (2000) Emission Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, p. 570. , IPCC Cambridge University Press, Cambridge, UK; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Midgley, P.M., (2013) The Physical Science Basis. Contribution of Working Group i to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, p. 1535. , IPCC: Climate Change edited by Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; Joussaume, S., Sadourny, R., Jouzel, J., A general circulation model of water isotope cycles in the atmosphere (1984) Nature, 311, pp. 24-29. , doi:10.1038/311024a0; Jouzel, J., Merlivat, L., Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation (1984) J. Geophys. Res., 89, pp. 11749-11757. , doi:10.1029/JD089iD07p11749; Jouzel, J., Russell, G.L., Suozzo, R.J., Koster, R.D., White, J.W.C., Broecker, W.S., Simulations of the HDO and H18 2 O atmospheric cycles using the NASA GISS general circulation model: The seasonal cycle for present-day conditions (1987) J. Geophys. Res., 92, pp. 14739-14760. , doi:10.1029/JD092iD12p14739; Jouzel, J., Hoffmann, G., Koster, R.D., Masson, V., Water isotopes in precipitation: Data/model comparison for present-day and past climates (2000) Q. Sci. Rev., 19, pp. 363-379. , doi:10.1016/S0277- 3791(99)00069-4; Koster, R., Jouzel, J., Souzzo, R., Russell, G., Broecker, W., Rind, D., Eagleson, P., Global sources of local precipitation as determined by the NASA/GISS GCM (1986) Geophys. Res. Lett., 13, pp. 121-124. , doi:10.1029/GL013i002p00121; Koster, R.D., De Valpine, D.P., Jouzel, J., Continental water recycling and H18 2 O concentrations (1993) Geophys. Res. Lett., 20, pp. 2215-2218. , doi:10.1029/93GL01781; Krishnamurti, T.N., Xue, J., Bedi, H.S., Ingles, K., Oosterhof, D., Physical initialization for numerical weather prediction over the tropics (1991) Tellus B, 43, pp. 53-81. , doi:10.1034/j.1600- 0889.1991.t01-2-00007.x; Krystek, M., Anton, M., A weighted total least-squares algorithm for fitting a straight line (2007) Meas. Sci. Technol., 18, pp. 3438-3442. , doi:10.1088/0957-0233/18/11/025; Kurita, N., Numaguti, A., Sugimoto, A., Ichiyanagi, K., Yoshida, N., Relationship between the variation of isotopic ratios and the source of summer precipitation in eastern Siberia (2003) J. Geophys. Res., 108, p. 4339. , doi:10.1029/2001JD001359; Kurita, N., Yoshida, N., Chayanova, E.A., Modern isotope climatology of Russia: A first assessment (2004) J. Geophys. Res., 109, pp. D3102. , doi:10.1029/2003JD003404; Landais, A., Risi, C., Bony, S., Vimeux, F., Descroix, L., Falourd, S., Bouygues, A., Combined measurements of 17Oexcess and d-excess in African monsoon precipitation: Implications for evaluating convective parameterizations (2010) Earth Planet. Sci. Lett., 298, pp. 104-112. , doi:10.1016/j.epsl.2010.07.033; Langebroek, P.M., Werner, M., Lohmann, G., Climate information imprinted in oxygen-isotopic composition of precipitation in Europe (2011) Earth Planet. Sci. Lett., 311, pp. 144-154. , doi:10.1016/j.epsl.2011.08.049; Lee, J.E., Fung, I., "Amount effect" of water isotopes and quantitative analysis of post-condensation processes (2008) Hydrol. Process., 22, pp. 1-8. , doi:10.1002/Hyp.6637; Lin, S.J., Rood, R.B., Multidimensional fluxform semi Lagrangian transport schemes (1996) Mon. Weather Rev., 124, pp. 2046-2070. , doi:10.1175/1520- 0493(1996)1242046:MFFSLT2.0.CO;2; Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J.F., Jansen, E., Timmermann, A., (2013) Information from Paleoclimate Archives. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group i to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 383-464. , edited by: Stocker, T. F., Qin, D., Plattner, G.- K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; Mathieu, R., Pollard, D., Cole, J.E., White, J.W.C., Webb, R.S., Thompson, S.L., Simulation of stable water isotope variations by the GENESIS GCM for modern conditions (2002) J. Geophys. Res., 107, p. 4037. , doi:10.1029/2001JD900255; Merlivat, L., Jouzel, J., Global Climatic Interpretation of the deuterium-oxygen 18 relationship for precipitation (1979) J. Geophys. Res., 84, pp. 5029-5033. , doi:10.1029/JC084iC08p05029; Merlivat, L., Ravoire, J., Vergnaud, J.P., Lorius, C., Tritium and deuterium content of snow in Groenland (1973) Earth Planet. Sci. Lett., 19, pp. 235-240. , doi:10.1016/0012-821X(73)90121-0; Noone, D., Simmonds, I., Associations between 18O of water and climate parameters in a simulation of atmospheric circulation for 1979-95 (2002) J. Clim., 15, pp. 3150-3169. , doi:10.1175/1520- 0442(2002)015<3150:ABOOWA>2.0.CO;2; Numaguti, A., Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model (1999) J. Geophys. Res., 104, pp. 1957-1972. , doi:10.1029/1998JD200026; Rast, S., Brokopf, R., Cheedela, S.-K., Esch, M., Gayler Kirchner, I., Kornblüh, L., Rhodin, A., Wieners, K.-H., (2013) 2013: User Manual for ECHAM6, Reports on Earth System Science 13, Max Planck Institute for Meteorology, , Hamburg, Germany; Risi, C., Bony, S., Vimeux, F., Jouzel, J., Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic in- terpretations of tropical isotopic records (2010) J. Geophys. Res., 115, pp. D12118. , doi:10.1029/2009JD013255; Risi, C., Bony, S., Vimeux, F., Frankenberg, C., Noone, D., Worden, J., Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation (2010) J. Geophys. Res., 115, pp. D24110. , doi:10.1029/2010JD014690; Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., Funke, B., Sturm, C., Processevaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues. Part 1: Comparison between models and observations (2012) J. Geophys. Res., 117, pp. D05303. , doi:10.1029/2011JD016621; Risi, C., Noone, D., Frankenberg, C., Worden, J., Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements (2013) Water Ressources Res., 49, pp. 1-21. , doi:10.1002/wrcr.20312; Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Tompkins, A., The atmospheric general circulation model ECHAM5 (2003) Part 1, Model Description. Report No. 349, Max Planck Institute for Meteorology, , Hamburg, Germany; Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schulzweida, U., Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model (2006) J. Clim., 19, pp. 3771-3791. , doi:10.1175/JCLI3824.1; Rodgers, C.D., Connor, B.J., Intercomparison of remote sounding instruments (2003) J. Geophys. Res., 108, p. 4116. , doi:10.1029/2002JD002299; Rokotyan, N.V., Zakharov, V.I., Gribanov, K.G., Bréon, F.-M., Imasu, R., Werner, M., Butzin Petri, M.C., Notholt, J., Retrieval of 18O and D in the atmospheric water vapour from high-resolution ground-based FTIR measurements of solar radiation in near-infrared (2014) Atm. Meas. Tech. Discuss., 7, pp. 195-231. , doi:10.5194/amtd-7-195-2014; Saurer, M., Schweingruber, F., Vaganov, E.A., Shiyatov, S.G., Siegwolf, R., Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia (2002) Geophys. Res. Lett., 29, p. 1296. , doi:10.1029/2001GL013739; Schmidt, G.A., Hoffmann, G., Shindell, D.T., Hu, Y., Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratospheretroposphere water exchange (2005) J. Geophys. Res., 110, pp. D21314. , doi:10.1029/2005JD005790; Sidorova, O.V., Siegwolf, R.T.W., Saurer, M., Naurzbaev, M.M., Shashkin, A.V., Vaganov, E.A., Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes (2010) Global Change Biol., 16, pp. 1003-1018. , doi:10.1111/j.1365-2486.2009.02008.x; Sonntag, C., Neureuther, P., Kalinke, C., Münnich, K.O., Klitzsch, E., Weistroffer, K., Zur Paläoklimatik der Sahara (1976) Naturwissenschaften, 63, pp. 479-479. , doi:10.1007/BF00624580; Sturm, C., Zhang, Q., Noone, D., An introduction to stable water isotopes in climate models: Benefits of forward proxy modelling for paleoclimatology (2010) Clim. Past, 6, pp. 115-129. , doi:10.5194/cp-6-115-2010; Tindall, J.C., Valdes, P.J., Sime, L.C., Stable water isotopes in HadCM3: Isotopic signature of El Niño-Southern Oscillation and the tropical amount effect (2009) J. Geophys. Res., 114, pp. D04111. , doi:10.1029/2008JD010825; Tingley, M.P., Huybers, P., Recent temperature extremes at high northern latitudes unprecedented in the past 600 years (2013) Nature, 496, pp. 201-208. , doi:10.1038/nature11969; Jones, P., Harris, I., http://badc.nerc.ac.uk/view/badc.nerc.ac.uk_ATOM_ACTIVITY_0c08abfc-f2d5- 11e2-a948-00163e251233, University of East Anglia Climatic Research Unit (CRU) CRU Time Series (TS) high resolution gridded data version 3.21, available from (last access: 18 September 2013), NCAS British Atmospheric Data Centre; Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., Da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Woollen, J., The ERA-40 re-analysis (2005) Q. J. Roy. Meteor. Soc., 131, pp. 2961-3012. , doi:10.1256/qj.04.176; Vuille, M., Werner, M., Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: Observations and model results (2005) Clim. Dyn., 25, pp. 401-413. , doi:10.1007/s00382-005-0049-9; Werner, M., Heimann, M., Modeling interannual variability of water isotopes in Greenland and Antarctica (2002) J. Geophys. Res., 107, p. 4001. , doi:10.1029/2001JD900253; Werner, M., Heimann, M., Hoffmann, G., Isotopic composition and origin of polar precipitation in present and glacial climate simulations (2001) Tellus B, 53, pp. 53-71. , doi:10.1034/j.1600- 0889.2001.01154.x; Werner, M., Langebroek, P.M., Carlsen, T., Herold, M., Lohmann, G., Stable water isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a global scale (2011) J. Geophys. Res., 116, pp. D15109. , doi:10.1029/2011jd015681; Yoshimura, K., Frankenberg, C., Lee, J., Kanamitsu, M., Worden, J., Röckmann, T., Comparison of an isotopic atmospheric general circulation model with new quasi-global satellite measurements of water vapor isotopologues (2011) J. Geophys. Res., 116, pp. D19118. , doi:10.1029/2011JD016035
Correspondence Address Butzin, M.; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; email: martin.butzin@awi.de
Publisher Copernicus GmbH
Language of Original Document English
Abbreviated Source Title Atmos. Chem. Phys.
Source Scopus