A new technology for the nuclear industry for the complete and continuous pyrochemical reprocessing of spent nuclear fuel: Catalyst enhanced molten salt oxidation / Griffiths T.R., Volkovich V.A. // Nuclear Technology. - 2008. - V. 163, l. 3. - P. 382-400.

ISSN:
00295450
Type:
Conference Paper
Abstract:
With the current and forthcoming need to develop new nuclear power plants, decommission existing nuclear plants, and satisfy future demands to minimize nuclear waste, it is important to examine and test potential new technologies instead of limit the methods to the original techniques. The modern and future safeguards that are or will be imposed on the industry will be more restrictive than in the early years, and it behooves the nuclear industry to consider and employ recent beneficial developments. An approach to a complete pyrochemical reprocessing cycle - which can be closed and nonaqueous - that employs catalyst enhanced molten salt oxidation (CEMSO) is outlined. We believe that this proposed new technology is faster and has the potential to be more complete than the two main existing technologies, will produce fission products in a compact and suitable form for vitrification, and will have additional cleanup and other advantages. An outline of our process was presented at the Seventh International Symposium on Molten Salts Chemistry and Technology in Toulouse, France, and an invitation was extended for a longer account. We thus present a sufficient description of our process (developed at a university, not at a nuclear institute, and based on the data in our publications) for it to be taken to pilot-plant scale, without initially employing highly radioactive isotopes, together with all our background data, or references thereto, obtained over a 10-yr period. To assist readers, the titles of our 50 + publications and those of others are given in the reference section. CEMSO is a technology that we are convinced has much future promise. This account has been written with reprocessing and nuclear engineers and technologists in mind and is aimed at helping them understand the potential and interesting subtleties of molten salt chemistry, a topic they will not have previously encountered. The reasons why the original molten salt oxidation (MSO) experiments on nuclear fuel and waste in the last century were limited and discontinued are here shown to arise from a misunderstanding of the chemistry involved. Thus, the full potential and advantages for a rapid and efficient separation and recycling technology, which we have established, were missed. Uranium (and plutonium) in spent fuel can be converted to insoluble uranates by air sparging in molten carbonates (solubility of uranates ∼200 ppm). (Data on plutonates are not determined but are expected to be similar.) The fission product elements remain in solution and are concentrated and later precipitated (>97% efficiency) as phosphates, the carbonate melt is recycled, and minor gaseous products can be trapped. Areas needing further research, impossible for us, are mainly the chemistry of transuranic actinides in molten carbonates and of their phosphate compounds and the design and manufacture of pilot-plant test rigs. We have investigated the 24 major fission product elements Cs, Mg, Sr, Ba, lanthanides (La to Dy), Zr, Cr, Mo, Mn, Re (to simulate 7c), Fe, Ru, Ni, Cd, Bi, and Te in molten chlorides, considered comparable and more convenient than carbonate. Cesium was removed completely as a complex phosphate precipitate. Melts containing several fission product elements were explored for possible coprecipitation reactions. The previously developed industrial technology for MSO can be employed with CEMSO to create in minimum time a fast, efficient technique for reprocessing nuclear fuel and concentrating fission products and radioactive waste, applicable to current decommissioning and future nuclear reactor technology.
Author keywords:
Fission products; Molten carbonate; Phosphate precipitation
Index keywords:
Actinides; Barium; Carbonates; Catalysis; Cesium; Chemical oxygen demand; Chemistry; Chlorine compounds; Chromium; Computer networks; Concentration (process); Diesel engines; Electric power plants; En
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51049124050&partnerID=40&md5=c2c43027bd02db4592b2e8870a3471b2
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-51049124050&partnerID=40&md5=c2c43027bd02db4592b2e8870a3471b2
Affiliations Redston Trevor Consulting Ltd., 58 High Ash Avenue, Leeds LS17 8RF, United Kingdom; Ural State Technical University-UPI, Department of Rare Metals, 19, Mira Str., Ekaterinburg 620002, Russian Federation
Author Keywords Fission products; Molten carbonate; Phosphate precipitation
References GRIFFITHS, T.R., VOLKOVICH, V.A., A Review of the High Temperature Oxidation of Uranium Oxides in Molten Salts and in the Solid State to Form Alkali Metal Uranates, and Their Composition and Properties (1999) J. Nucl. Mater, 274, p. 229; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., FIELDS, M., WILSON, P.D., Oxidation Of UO2 in Molten Alkali-Metal Carbonate Mixtures: Formation of Uranates and Diuranates (1996) J. Chem. Soc., Faraday Trans, 92, p. 5059; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., FIELDS, M., Increased Oxidation of UO2 in Molten Alkali Metal Carbonate-Based Mixtures by Increasing Oxygen Solubility and by Controlled Generation of Superoxide Ions, and Evidence for a New Sodium Uranate (1997) J. Chem. Soc., Faraday Trans, 93, p. 3819; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., FIELDS, M., THIED, R.C., Oxidation of Powder and Ceramic UO2 by KClO3 in Molten (Li-Na-K)2CO3 Eutectic (1998) J. Chem. Soc., Faraday Trans, 94, p. 2623; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., FIELDS, M., Oxidation of Ceramic Uranium Dioxide in Alkali Metal Carbonate-Based Melts: A Study Using Various Oxidants and Comparison with UO2 Powder (1998) J. Nucl. Mater, 256, p. 131; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., FIELDS, M., Vibrational Spectra of Alkali Metal (Li, Na and K) Uranates and Consequent Assignment of Uranate Ion Site Symmetry (1998) Vib. Spectrosc, 17, p. 83; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., FIELDS, M., Effect of Temperature on Chromaticity Co-Ordinates over a 700 Degree Range: A Study of Alkali Metal Uranates (1998) Dyes and Pigments, 39, p. 139; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., THIED, R.C., Solubilities and Solubilisation. Enthalpies of Alkali Metal Uranates(VI) in Carbonate Melts (1999) Phys. Chem. Chem. Phys, 1, p. 3297; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., THIED, R.C., Chemical Solubility of Alkali Metal Uranate (VI) Species in Molten Carbonates Under Basic and Acidic Conditions (2000) Phys. Chem. Chem. Phys, 2, p. 3029; GABRIEL, J.-C., VINCENT, D., BOUTEILLON, J., POIGNET, J.-C., VOLKOVICH, V.A., GRIFFITHS, T.R., Molybdenum Chemistry in Molten LiCl-KCl Eutectic: An Electrochemical and Absorption Spectroscopy Study of the Concentration Dependent Stability of Solutions of K3MOCl6 (1999) Electrochim. Acta, 44, p. 4619; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., THIED, R.C., Electronic Absorption Spectral Study of the Oxidation of Uranium Dioxide in Chloride Melts (2000) Phys. Chem. Chem. Phys, 2, p. 3871; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., THIED, R.C., A New Method for Determining Oxygen Solubility in Molten Carbonates and Carbonate-Chloride Mixtures Using the Oxidation of UO2 to Uranate Reaction (2000) J. Nucl. Mater, 282 (2-3), p. 152; VOLKOVICH, V.A., GRIFFITHS, T.R., THIED, R.C., Raman and Infrared Spectra of Rubidium and Cesium Uranates(VI) and Some Problems Assigning Diuranate Site Symmetries (2001) Vib. Spectrosc, 25 (2), p. 223; VOLKOVICH, V.A., GRIFFITHS, T.R., FRAY, D.J., THIED, R.C., The Electronic Spectra of Alkali Metal Uranates: An Analysis of Their Diffuse Reflectance Spectra (2001) Phys. Chem. Chem. Phys, 3 (23), p. 5182; VOLKOVICH, V.A., GRIFFITHS, T.R., THIED, R.C., Treatment of Molten Salt Wastes by Phosphate Precipitation: Removal of Fission Product Elements After Pyrochemical Reprocessing of Spent Nuclear Fuels in Chloride Melts (2003) J. Nucl. Mater, 323, p. 49; VOLKOVICH, V.A., GRIFFITHS, T.R., THIED, R.C., LEWIN, B., Behavior of Molybdenum in Pyrochemical Reprocessing: A Spectroscopic. Study of the Chlorination of Molybdenum and Its Oxides in Chloride Melts (2003) J. Nucl. Mater, 323, p. 93; POLOVOV, I.B., VOLKOVICH, V.A., SHIPULIN, S.A., MASLOV, S.V., KHOKHRYAKOV, A.A., VASIN, B.D., GRIFFITHS, T.R., THIED, R.C., Chemistry of Vanadium Chlorides in Molten Salts: An Electronic Absorption Spectroscopy Study (2003) J. Mol. Liq, 105 (1), p. 105; VOLKOVICH, V.A., GRIFFITHS, T.R., THIED, R.C., Formation of Lanthanide Phosphates in Molten Salts and Evaluation for Nuclear Waste Treatment (2003) Phys. Chem. Chem. Phys, 5, p. 3053; V. A. VOLKOVICH, B. D. VASIN, T. R. GRIFFITHS, E. O. MEDVEDEV, and S. M. YAKIMOV, The Study of the Processes of Precipitation of Rare Earth Element Phosphates from Chloride Melts, Vestn. USTU-UPI, 5, 35, part 1, 21 (2004) (in Russian); VOLKOVICH, V.A., MAY, I., GRIFFITHS, T.R., CHARNOCK, J.M., LEWIN, R.G., Four Thallium(I) Uranates (VI), Their Preparation, Structure and Properties (2005) J. Nucl. Mater, 344, p. 73; VOLKOVICH, V.A., MAY, I., GRIFFITHS, T.R., CHARNOCK, J.M., BHATT, A.I., LEWIN, R.G., Structures of Chloro-Uranium Species in Molten LiCl-BeCl2 Eutectic: A Combined X-Ray and Electronic Absorption Spectroscopy Study (2005) J. Nucl. Mater, 344, p. 100; V. A. VOLKOVICH, I. MAY, T. R. GRIFFITHS, J. M. CHARNOCK, and R. G. LEWIN, An X-Ray Absorption Spectroscopy Study of Yttrium. and Zirconium Complexes in Molten Lithium Chloride, Proc. 206th Mrg. Electrochemical Society (Molten Salts XIV), Honolulu, Hawaii, October 3-8, 2004, p. 162, Electrochemical Society (Proceedings 2004-24) (2006); B. D. VASIN, I. B. POLOVOV, V. A. VOLKOVICH, T. R. GRIFFITHS, and A. V. BEREZIN, Coordination State of Vanadium in Chloride Melts: An Electronic Absorption Spectros-copy Study, Proc. 206th Mtg. Electrochemical Society (Molten Salts XIV), Honolulu, Hawaii, October 3-8, 2004, p. 261, Electrochemical Society (Proceedings 2004-24) (2006); V. A. VOLKOVICH, I. MAY, T. R. GRIFFITHS, J. M. CHARNOCK, and R. G. LEWIN, The Reprocessing of Nuclear Waste Using Molten Salts: Selective Precipitation Using Phosphate and Solving Problems of Speciation, Proc. 206th Mtg. Electrochemical Society (Molten Salts XIV), Honolulu, Hawaii, October 3-8, 2004, p. 729, Electrochemical Society (Proceedings 2004-24) (2006); V. A. VOLKOVICH, C. A. SHARRAD, A. I. BHATT, H. KINOSHITA, A. KOSTER, J. M. CHARNOCK, T. R. GRIFFITHS, and R. G. LEWIN, An EXAFS Spectroscopy Study of Speciation of Uranium and Some Fission Product Elements in Chloride Melts, Proc. 206th Mtg. Electrochemical Society (Molten Salts XIV), Honolulu, Hawaii, October 3-8, 2004, p. 814, Electrochemical Society (Proceedings 2004-24) (2006); GRIFFITHS, T.R., VOLKOVICH, V.A., Reprocessing Spent Nuclear Fuel Using Molten Carbonates and Subsequent Precipitation of Rare Earth Fission Products Using Phosphate (2006) J. Alloys Comp, 418, p. 116; VOLKOVICH, V.A., MAY, I., CHARNOCK, J.M., GRIFFITHS, T.R., Uranium Speciation in LiCl-BeC12 Eutectic Melt (2006) Rasplavy (Melts), 3, p. 48. , in Russian; V.A. VOLKOVICH, T. R. GRIFFITHS, D. J. FRAY, M. FIELDS, and R. C. THIED, Electronic Spectra and Solubilities of Alkali Metal Uranates Formed Upon Oxidation of Uranium Dioxide in Alkali Metal Carbonate and Carbonate Melts, Proc. 177th Mtg. Electrochemical Society (Molten Salts XI), San Diego, California, May 3-8, 1998, p. 612, P. C. TRULOVE, H. C. DE LONG, G. R. STAFFORD, and S. DEKI, Eds., Electrochemical Society (Proceedings Series, 98-11) (1998); T. R. GRIFFITHS, V. A. VOLKOVICH, and R. C. THIED, Spectroscopic Investigation of the Chemistry in Molten Chlorides of Some of the Major Fission Product Elements, Proc. Int. George Papatheodorou Symp., Patras, Greece, September 17-18, 1999, p. 78, S. BOGHOSIAN, V. DRACOPOULOS, C. G. KONTOYANNIS, and G. A. VOYIATZIS, Eds., Institute of Chemical Engineering and High Temperature Chemical Processes (1999); V. A. VOLKOVICH, T. R. GRIFFITHS, and R. C. THIED, An in situ Electronic Spectroscopy Study of the Chemistry During Chlorination in Chloride Melts of Uranium and Some Elements Found in Spent Nuclear Fuel, Progress in Molten Salt Chemistry 1, Prof. Niels J. Bjerrum Special p. 559, R. W. BERG, J. H. VON BARNER, and H. A. HJULER, Eds., Elsevier, Paris (2000); V. A. VOLKOVICH, T. R. GRIFFITHS, D. J. FRAY, M. FIELDS, and R. C. THIED, A Novel Sensitive Method for Determining Oxygen Solubility in Molten Carbonates and Carbonate-Based Melts: Reactions of Oxidising Species Formed with Uranium Dioxide, Proc. 12th Int. Symp. Molten Salts (Molten Salts XII), Honolulu, Hawaii, October 17-22, 1999, p. 441, P. C. TRULOVE, H. C. DE LONG, G. R. STAFFORD, and S. DEKI, Eds., Electrochemical Society (Proceedings Series 99-41) (2000); T. R. GRIFFITHS, S. BARR, V. A. VOLKOVICH, and E. M. ANGHEL, Destruction of Organic Wastes Using Molten Carbonates, Proc. 6th Int. Symp. Molten Salt Chemistry and Technology, Shanghai, China, October 8-13, 2001, p. 130, N. Y. CHEN and Z. Y. QIAO, Eds., Shanghai University Press (2001); V. A. VOLKOVICH, T. R. GRIFFITHS, and R. C. THIED, An In Situ Electronic Spectroscopy Study of Reactions of Some Elements Comprising Spent Nuclear Fuel in Molten Chlorides, Proc. 6th Int. Symp. Molten Salt Chemistry and Technology, Shanghai, China, October 8-13, 2001, p. 350, N. Y. CHEN and Z. Y QIAO, Eds., Shanghai University Press (2001); T. R. GRIFFITHS, V. A. VOLKOVICH, and E. M. ANGHEL, Molten Salt Oxidation: A Reassessment of Its Supposed Catalytic Mechanism and Hence Its Development for the Disposal of Waste Automotive Tires, Proc. 13th Int. Symp. Molten Salts (Molten Salts XIII), Philadelphia, Pennsylvania, May 12-17,2002, p. 306, H. C. DELONG, R. W. BRADSHAW, M. MATSUNAGA, G. R. STAFFORD, and P. C. TRULOVE, Eds., Electrochemical Society (Proceedings 2002-19) (2002); V. A. VOLKOVICH, T. R. GRIFFITHS, and R. C. THIED, Nano Materials from Molten Salts: Preparation of Nano-Sized Lanthanide Phosphates from Chloride Melts, Proc. 13th Int. Symp. Molten Salts (Molten Salts XIII), Philadelphia, Pennsylvania, May 12-17, 2002, p. 590, H. C. DELONG, R. W. BRADSHAW, M. MATSUNAGA, G. R. STAFFORD, and P. C. TRULOVE, Eds., Electrochemical Society (Proceedings 2002-19) (2002); VOLKOVICH, V.A., BHATT, A.I., MAY, I., GRIFFITHS, T.R., THIED, R.C., A Spectroscopic Study of Uranium Species Formed in Chloride Melts (2002) Proc. Int. Conf. Actinides 2001, J. Nucl, Sci. Technol, (SUPPL.EMENT 3), p. 595; V. A. VOLKOVICH, I. MAY, A. I. BHATT, T. R. GRIFFITHS, J. M. CHARNOCK, and R. G. LEWIN, A Combined Electronic and X-Ray Absorption Spectroscopy Study of Uranium in Oxidation States III, IV, V and VI in Molten LiCl, Proc. Int. Symp. Ionic Liquids, in Honour of Marcelle Gaune-Escard, Carry le Rouet, France, June 26-28, 2003, p. 253, H. A. ØYE and A. JAGTØYEN, Eds. (2003); GRIFFITHS, T.R., VOLKOVICH, V.A., A New General and Rapid Method for Investigating Hot Corrosion: Preliminary Tests on Electrodes for Molten Carbonate Fuel Cells (2004) Materials Science Forum, High Temperature Corrosion and Protection of Materials 6, 461-464, p. 1133. , Trans Tech Publications, Switzerland; V. A. VOLKOVICH, I. MAY, T. R. GRIFFITHS, J. M. CHARNOCK, and R. G. LEWIN, The Reprocessing of Nuclear Waste Using Molten Salts: Selective Precipitation Using Phosphate and Solving Problems of Speciation, Proc. EUCHEM 2004 Molten Salts Conf., Piechowice, Poland, June 20-25, 2004, p. 93, J. KAŹMIERCZAK, and G. ZABIŃSKAOLSZAK, Eds. (2005); V. A. VOLKOVICH, I. MAY, T. R. GRIFFITHS, J. M. CHARNOCK, and R. G. LEWIN, An X-Ray Absorption Spectroscopy Study of Yttrium and Zirconium Complexes in Molten Lithium Chloride, Proc. EUCHEM 2004 Molten Salts Conf., Piechowice, Poland, June 20-25, 2004, p. 368, J. KAŹMIERCZAK, and G. ZABIŃSKA-OLSZAK, Eds. (2005); T. R. GRIFFITHS, V. A. VOLKOVICH, E. M. ANGHEL, and W. R. CARPER, Molten Salt Oxidation for the Efficient Destruction of Radioactive, Hazardous Chemical, Medical Waste and Munitions, Proc. 24th Annual Int. Conf. Incineration and Thermal Treatment Technologies (IT3), Galveston, Texas, May 9-13, 2005, L. PRESS and S. WARREN, Eds., LOI, Inc. (2005) (CD-ROM); VOLKOVICH, V.A., VASIN, B.D., GRIFFITHS, T.R., MEDVEDEV, E.O., YAKIMOV, S.M., Study of Processes of Precipitation of Rare Earth Element Phosphates from Chloride Melts (2005) Proc. Ural State Technical University-Ural Polytechnic Institute Modern Technologies: Problems and Solutions, 5 (35 PART 1), p. 21. , in Russian; VASIN, B.D., VOLKOVICH, V.A., MASLOV, S.V., POLOVOV, I.B., GRIFFITHS, T.R., DANILOV, D.A., REBRIN, O.I., KAZAKOV, S.A., Electronic Absorption Spectra of 4d-Elements in Chloride Melts (2005) Proc. 7th Int. Symp. Molten Salts Chemistry and Technology, 1, p. 341. , Toulouse, France, August 29-September 2; MAY, I., VOLKOVICH, V.A., SHARRAD, C.A., POLOVOV, I.B., CHARNOCK, J.M., GRIFFITHS, T.R., KINOSHITA, H., LEWIN, R.G., Speciation of Uranium in Chloride Melts (2005) Proc. 7th Int. Symp. Molten Salts Chemistry and Technology, 1, p. 347. , Toulouse, France, August 29-September 2; VOLKOVICH, V.A., GRIFFITHS, T.R., The Complete Reprocessing of Spent Nuclear Fuel Using Molten Salt Carbonates to First Separate Uranium and Plutonium and Then Selectively Precipitate Fission Products Using Phosphate (2005) Proc. 7th Int. Symp. Molten Salts Chemistry and Technology, 2, p. 631. , Toulouse, France, August 29-September 2; VOLKOVICH, V.A., YAKIMOV, S.M., VASIN, B.D., POLOVOV, I.B., MEDVEDEV, E.O., GRIFFITHS, T.R., REBRIN, O.I., Dissolution of Lanthanide Oxides and Precipitation of Lanthanide Phosphates in Chloride Melts (2005) Proc. 7th Int. Symp. Molten Salts Chemistry and Technology, 2, p. 663. , Toulouse, France, August 29-September 2; V. A. VOLKOVICH, I. MAY, C. A. SHARRAD, H. KINOSHITA, I. B. POLOVOV, A. BHATT, J. M. CHARNOCK, T. R. GRIFFITHS, and R. G. LEWIN, Uranium Speciation in Molten Salts from X-Ray Absorption and Electronic Absorption Spectroscopy Measurements, Proc. Int. Conf. Actinides 2005 Recent Advances in Actinide Science, p. 485, I. MAY, R. ALVAREZ, and N. D. BRYAN, Eds., Royal Society of Chemistry (2006); V. A. VOLKOVICH, B. D. VASIN, I. B. POLOVOV, S. A. KAZAKOV, and T. R. GRIFFITHS, The Effect of Fission Product Elements on Chlorination of Uranium in Molten Salts, Proc. Int. Conf. Actinides 2005 Recent Advances in Actinide Science, p. 605, I. MAY, R. ALVAREZ, and N. D. BRYAN, Eds., Royal Society of Chemistry (2006); VOLKOVICH, V.A., GRIFFITHS, T.R., VASIN, B.D., MEDVEDEV, E.O., Study of Formation of Rare Earth Element Phosphates in Molten NaCl-KCl Equimolar Mixture (2007) Rasplavy (Melts), (4), p. 63. , in Russian; VOLKOVICH, V.A., POLOVOV, I.B., VASIN, B.D., GRIFFITHS, T.R., SHARRAD, C.A., MAY, I., CHARNOCK, J.M., Effect of Melt Composition on Reaction of Uranium Dioxide with Hydrogen Chloride in Molten Alkali Chlorides (2007) Zeitschrift für Naturforschung A, 62 A (12), p. 671; DANILOV, D.A., VOLKOVICH, V.A., VASIN, B.D., POLOVOV, I.B., GRIFFITHS, T.R., Tungsten Chemistry in Alkali Chloride Melts (2007) Zeitschrift d≻r Naturforschung A, 62 A (12), p. 739; Development of a Molten Carbonate Process for Removal of Sulfur Dioxide from Power Stack Gases, PB 1790109, U.S. Department of Commerce (1968); NAVRATIL, J.D., STEWART, A.E., Waste Treatment Using Molten Salt Oxidation (1996) Nukleonika, 41, p. 57; BELL, J.T., HASS, P.A., RUDOLPH, J.C., Molten Salt Oxidation of Mixed Wastes: Separation of Radioactive Materials and Resource Conservation and Recovery Act (RCRA) Materials (1995) Sep. Sci. Tech, 30, p. 1755; Z. R. ISMAGILOV, M. A. KERZHENTSEV, and M. ADAMSON, Oxidation in Molten Salts and Catalysts: Treatability Study of Model Compounds and Melts, p. 29, Scientific Advances in Alternative Demilitarization Technologies, F. W. HOLM, Ed., Kluwer Academic Publishers, Netherlands (1996); COOLEY, C.R., Status Review of Molten Salt Oxidation for Mixed Low-Level Waste (1998) Memorandum, EM-50, , U.S. Department of Energy Dec. 17; STELMAN, D., GAY, R.L., Fundamental Chemical and Process Differences Between Molten Salt Oxidation and Incineration, (1993) Report for Rockwell International, , Aug; DUNKS, G.B., STELMAN, D., YOSIM, S.J., Graphite Oxidation in Molten Sodium Carbonate (1980) Carbon, 18, p. 363; DUNKS, G.B., STELMAN, D., Electrochemical Studies of Molten Sodium Carbonate (1983) Inorg. Chem, 22, p. 2168; DUNKS, G.B., Electrochemical Studies of Graphite in Sodium Carbonate Melt (1984) Inorg. Chem, 23, p. 828; LEFRANCOISS, P.A., BARCLAY, K.M., (1971), U.S. Patent 3,567,412; BIRK, J.R., HUBER, D.A., (1973), U.S. Patent 3,708,270; BIRK, J.R., (1973), U.S. Patent 3,710,737; STELMAN, D., DARNELL, A.J., CHRISTIE, J.R., YOSIM, S.J., Air Oxidation of Graphite in Molten Salts (1976) Molten Salts, p. 299. , Electrochemical Society, Princeton, New Jersey; DUNKS, G.B., STELMAN, D., Graphite Oxidation of Sodium Carbonate/ Sodium Sulfate Melts (1982) Inorg. Chem, 21, p. 108; ANDERSEN, B.K., Thermodynamic Properties of Alkali Metal Carbonates, (1972), p. 281. , PhD Thesis, p, Technical University of Denmark, Lyngby; CASSIR, M., MOUTIERS, G., DEVYNCK, J., Stability and Characterisation of Oxygen Species in Alkali Molten Carbonate: A Thermodynamic and Electrochemical Approach (1993) J. Electrochem. Soc, 140, p. 3114; K. OTA, K. KURODA, and M. TAKAHASHI, CO2 Pressure Dependence of Oxygen Reduction in Molten Carbonate, Proc. 7th Int. Symp. Molten Salts, p. 716, C. L. HUSSEY, S. N. FLENGAS, J. S. WILKES, and Y. ITO, Eds., Electrochemical Society (1990); SMITH, S.W., VOGEL, W.M., KASPERIN, S., Solubilities of Oxygen in Fused Li2CO3- K2CO3 (1982) J. Electrochem. Soc, 129, p. 1668; HERRMANN, S.D., LI, S.X., SIMPSON, M.F., PHONGIKAROON, S., Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Separation Process to Separate and Recover Actinides from Fission Products (2006) Sep. Sci. Technol, 41 (10), p. 1965; R. WISHAU, A. MONTOYA, and K. B. RAMSEY, Application of Molten Salt Oxidation for the Minimization and Recovery of 238Pu-Contaminated Wastes, presented at 32nd Annual Midyear Health Physics Society Mtg., Creation and Future Legacy of Stockpile Stewardship Isotope Production, Applications, and Consumption, Albuquerque, New Mexico, January 24-27, 1999; ISMAGILOV, Z.R., KERZHENTSEV, M.A., SHKRABINA, R.A., TSIKOZA, L.T., LUNYUSHKIN, B.I., OSTROVSKI, Y.V., KOSTIN, A.L., BATTLESON, D.M., A Role of Catalysis for the Destruction of Waste from the Nuclear Industry (2000) Catalysis Today, 55, p. 23; GRANTHAM, L.F., McKENZIE, D.E., OLDENKAMP, R.D., RICHARDS, W.L., Disposal of Transuranic Solid Waste Using Atomic International's Molten Salt Combustion Process (1976) Al ERDA-13169, , Energy Research and Development Administration Mar. 15; McKENZIE, D.E., GRANTHAM, L.F., OLDENKAMP, R.D., RICHARDS, W.L., Volume Reduction of Waste Contaminated by Fission Product Elements and Plutonium Using Molten Salt Combustion (1977) Energy Research and Development Administration, Georgia Institute of Technology Radwaste Management Symp, , presented at, Atlanta, Georgia, May; BARCLAY, K.M., GAY, R.L., NEWCOMB, J.C., YOSIM, S.J., LORENZO, D.K., VAN CLEVE Jr., J.E., (1980) Disposal of Simulated Intermediate Level Radioactive Waste by Molten Salt Combustion, , ORNL/CFRP-799, Oak Ridge National Laboratory Consolidated Fuel Processing Program Apr; KLEYKAMP, H., The Chemical State of the Fission Products in Oxide Fuels (1985) J. Nucl. Mater, 131, p. 221; GRUEN, D.M., Argonne National Laboratory, Personal Communication
Correspondence Address Griffiths, T.R.; Redston Trevor Consulting Ltd., 58 High Ash Avenue, Leeds LS17 8RF, United Kingdom; email: t.r.griffiths@gmail.com
CODEN NUTYB
Language of Original Document English
Abbreviated Source Title Nucl Technol
Source Scopus