Oxidation of ceramic uranium dioxide in alkali metal carbonate-based melts: A study using various oxidants and comparison with UO2 powder / Volkovich V.A., Griffiths T.R., Fray D.J., Fields M. // Journal of Nuclear Materials. - 1998. - V. 256, l. 2-3. - P. 131-138.

ISSN:
00223115
Type:
Article
Abstract:
The oxidation of broken sintered ceramic UO2 pellets has been studied between 723 and 1073 K in a range of carbonate-based melts and under a variety of oxidising conditions. Comparison with the oxidation of UO2 powder under corresponding conditions showed that the reactivity of these media with ceramic UO2 was less, due to a lower relative surface area and a lower chemical activity of the sintered material. Pure carbonate melts, and with added alkali metal chlorides, produced essentially no reaction with ceramic UO2. Bubbling the melt with air or oxygen for many hours also had little effect. Addition of nitrate enabled the rate and extent of the reaction to be controlled, by varying the concentration of the oxidising agent and keeping the nitrate-to-UO2 mole ratio below ∼0.4. Above this ratio the available surface area was the main controlling factor of the reaction. Controlled in situ generation of superoxide ions increased significantly the uranate yield at 723 K. A minimum concentration of oxidising agent is thus necessary before reaction commences. Complete oxidation of ceramic UO2 was achieved in ∼2 h at 873 K in carbonate melts that contained KNO3 and were bubbled with oxygen. © 1998 Elsevier Science B.V. All rights reserved.
Author keywords:
Index keywords:
Alkali metal compounds; Carbonates; Ceramic materials; Composition effects; Molten materials; Nitrates; Oxidation; Oxygen; Potassium compounds; Powders; Reaction kinetics; Sintering; Potassium nitrate
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032139377&partnerID=40&md5=990bc72cc1180098b1fc68cc1e58e496
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032139377&partnerID=40&md5=990bc72cc1180098b1fc68cc1e58e496
Affiliations School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom; Dept. of Mining and Mineral Eng., University of Leeds, Leeds LS2 9JT, United Kingdom; British Nuclear Fuels Plc. (BNFL), R and T North, Seascale, Cumbria CA20 1PG, United Kingdom; Department of Rare Metals, Physical-Engineering Faculty, Ural State Technical University-UPI, 19 Mira Ul, 620002, Ekaterinburg, Russian Federation; Dept. of Mat. Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom; Protea Limited, Magpie Manor, Wistaston Green Road, Crewe CW2 8SA, United Kingdom
References Fujino, T., Ouchi, K., Yamashita, T., Natsume, H., (1983) J. Nucl. Mater., 116, p. 157; Morgan, L.G., Burger, L.L., Sheele, R.P., (1980) Actinide Separation, ACS Symposium Series 117, 117, p. 233. , J.D. Navratil, W.W. Schulz (Eds.), ACS, Washington, DC; German Patent Specification 1.226.198, 1971; Toussaint, C.J., Avogadro, A., (1974) J. Inorg. Nucl. Chem., 36, p. 781; Kryukova, A.I., Pechenevskaya, O.V., Skiba, O.V., (1990) Radiokhimiya, 32, p. 105; Volkovich, V., Griffiths, T.R., Fray, D.J., Fields, M., Wilson, P.D., (1996) J. Chem. Soc. Faraday Trans., 92, p. 5059; Volkovich, V.A., Griffiths, T.R., Fray, D.J., Fields, M., (1997) J. Chem. Soc. Faraday Trans., 93, p. 3819; Tso, T.C., Brown, D., Judge, A.I., Holloway, J.H., Fuger, J., (1985) J. Chem. Soc. Dalton Trans., p. 1853; Gebert, E., Hoekstra, H.R., Reis, A.H., Peterson, S.W., (1978) J. Inorg. Nucl. Chem., 40, p. 65; Carnall, W.T., Walker, A., Neufeldt, S.J., (1965) Inorg. Chem., 4, p. 1809; (1966) Inorg. Chem., 5, p. 2135; Allpress, J.G., Anderson, J.S., Hambly, A.N., (1968) J. Inorg. Nucl. Chem., 30, p. 1195; Hoekstra, H.R., (1965) J. Inorg. Nucl. Chem., 27, p. 801; Habboush, D.A., Kerridge, D.H., Tariq, S.A., (1979) Thermochim. Acta, 28, p. 143; Cordfunke, E.H.P., Loopstra, B.O., (1971) J. Inorg. Nucl. Chem., 33, p. 2427; Gilchrist, P., BNFL, Springneids, personal communication; Maru, H.C., (1984) Molten Salts Techniques, 2, p. 36. , R.J. Gale, D.G. Lovering (Eds.), Plenum, New York; White, S.H., Bower, M.M., (1980) Proc. Third Int. Symp. on Molten Salts, p. 334. , G. Mamantov, M. Blander, G.P. Smith (Eds.), Hollywood, The Electrochemical Society, Pennington, NJ; Smith, S.W., Vogel, W.M., Kapelner, S., (1982) J. Electrochem. Soc., 129, p. 1668; Vogel, W.M., Smith, S.W., Bregoli, L.J., (1983) J. Electrochem. Soc., 130, p. 575; Nishina, T., Uchida, I., (1990) Proc. Seventh Int. Symp. on Molten Salts, p. 706. , C.L. Hussey, S.N. Flengas, J.S. Wilkes, Y. Ito (Eds.), Montreal, 1990, The Electrochemical Society, Pennington, NJ; Ota, K., Kuroda, K., Tokahashi, M., (1990) Proc. Seventh Int. Symp. on Molten Salts, p. 716. , C.L. Hussey, S.N. Flengas, J.S. Wilkes, Y. Ito (Eds.), Montreal, 1990, The Electrochemical Society, Pennington, NJ; Davé, B.B., White, R.E., Srinivasan, S., (1990) Proc. Seventh Int. Symp. on Molten Salts, p. 726. , C.L. Hussey, S.N. Flengas, J.S. Wilkes, Y. Ito (Eds.), Montreal, 1990, The Electrochemical Society, Pennington, NJ; Appleby, A.J., Van Druen, C., (1980) J. Electrochem. Soc., 127, p. 1655; Jordan, J., McCarthy, W.B., Zambonin, P.G., (1969) Molten Salts, Characterisation and Analysis, p. 580. , G. Mamantov (Ed.), Marcel Dekker, New York; Griffiths, T.R., St, H.V., Hubbard, A., Allen, G.C., Tempest, P.A., (1988) J. Chem. Soc. Faraday Trans., 84, p. 4377
Correspondence Address Griffiths, T.R.; School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
CODEN JNUMA
Language of Original Document English
Abbreviated Source Title J Nucl Mater
Source Scopus