Increased oxidation of UO2 in molten alkali-metal carbonate based mixtures by increasing oxygen solubility and by controlled generation of superoxide ions, and evidence for a new sodium uranate / Volkovich V.A., Griffiths T.R., Fray D.J., Fields M. // Journal of the Chemical Society - Faraday Transactions. - 1997. - V. 93, l. 21. - P. 3819-3826.

ISSN:
09565000
Type:
Article
Abstract:
The oxidation of uranium dioxide to uranates in the ternary alkali-metal carbonate melt (Li-Na-K)2CO3 containing added chlorides or sulfates has been studied in the range 723-1023 K and a variety of uranium(VI) species was obtained. Increased oxygen solubility in fused carbonates was achieved by adding alkali-metal chloride or sulfate. The yield of uranates in chloride-containing melts decreased with increasing radius of the alkali-metal chloride cation, Li ≥ Na > K > Cs. When UO2 was oxidised in alkali chloride containing carbonate melts no intermediate uranium chloride complexes were observed. The temperature required for complete oxidation of UO2 can be lowered by 100-150 K by the addition of alkali-metal chlorides to carbonate melts. The addition of chloride and aluminium ions to form AlCl4 - effected UO2 oxidation by a different mechanism, through intermediate formation of uranyl complexes, but the yield of uranates was not significantly altered. Attempts at oxidation by direct addition of potassium superoxide at 723 K were inefficient owing to thermal instability of the reagent, but UO2 oxidation was enhanced, by more than 10%, by superoxide formed in situ by the reaction of peroxide and nitrate, compared with oxidation by peroxide or nitrate individually. Optimum conditions for complete oxidation at 723 K required a peroxide : nitrate mole ratio of ca. 3. The major reaction pathway in melts containing nitrate and peroxide, at various concentrations of these reactants, was determined. At a mole ratio of oxidiser to UO2 of 0.3, the percentage of UO2 oxidised and the yield of uranates, increased in the order Na2O2 ≈ KO2 < KNO2 < KNO3 < KNO3 + Na2O2. Evidence has been obtained for a new sodium uranate, Na2O(UO3-y), (1 < x < 2; y < 0.02).
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748647955&partnerID=40&md5=443365be05df6c8968c8504a7a69485a
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748647955&partnerID=40&md5=443365be05df6c8968c8504a7a69485a
Affiliations School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom; Department of Mining and Mineral Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom; British Nuclear Fuels Plc. (BNFL), R and T North, Seascale, Cumbria, CA20 1PG, United Kingdom; Department of Rare Metals, Physical-Engineering Faculty, Ural State Technical University-UPI, 19 Mira U1, 620002, Ekaterinburg, Russian Federation; Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
References Volkovich, V., Griffiths, T.R., Fray, D.J., Fields, M., Wilson, P.D., (1996) J. Chem. Soc., Faraday Trans., 92, p. 5059; Appleby, A.J., Van Druen, C., (1980) J. Electrochem. Soc., 127, p. 1655; Janz, G.J., (1967) Molten Salts Handbook, p. 177. , Academic Press, New York; Maru, H.C., (1983) Molten Salt Techniques, 2, p. 24. , ed. R. J. Gale and D. G. Lovering, Plenum Press, New York; Nishina, T., Masuda, Y., Uchida, I., Molten Salts Chemistry and Technology (1993) Proc. Electrochem. Soc., 93 (9), p. 424. , ed. M-L. Saboungi, H. Kojima, J. Duruz and D. Shores, The Electrochemical Society, Pennington; Frame, J.P., Rhodes, E., Ubbelohde, A.R., (1961) Trans. Faraday Soc., 57, p. 1075; Paniccia, F., Zambonin, P.G., (1972) J. Chem. Soc., Faraday Trans. 1, 68, p. 2083; Rahmel, A., Krueger, H.J., (1967) Z. Phys. Chem., 55, p. 25; Vidavskii, L.M., Kovba, L.M., Ippolitova, E.A., Spitsyn, V.I., (1961) Issledovaniya V Oblasti Khimii Urana, Sb. Stateii, p. 59. , Mosk. Gos. Univ., Moscow; Allpress, J.G., Anderson, J.S., Hambly, H.N., (1968) J. Inorg. Nucl. Chem., 30, p. 1195; Jordan, J., McCarthy, W.B., Zambonin, P.G., (1969) Molten Salts, Characterisation and Analysis, p. 580. , ed. G. Mamantov, Marcel Dekker, New York; Blander, M., Nagy, Z., (1983) Z. Naturforsch. A, 38, p. 116; Dai, S., Toth, L.M., Del Gul, G.D., Metcalf, D.H., (1996) J. Phys. Chem., 100, p. 220; Vidavskii, L.M., Kovba, L.M., Ippolitova, E.A., Issledovaniya V Oblasti Khimii Urana, Sb. Statei, p. 63. , Mosk. Gos. Univ., Moscow; Busev, A.I., Tiptsova, V.G., Ivanov, V.M., (1966) Handbook of the Analytical Chemistry of Rare Elements, p. 404. , Ann Arbor-Humphrey Science Publishers, New York; Farrah, G.H., Moss, M.L., (1962) Treatise on Analytical Chemistry, 4 (2 PART), p. 99. , ed. I. M. Kolthoff, P. J. Elving and F. H. Stress, Wiley-Interscience Publishers, New York; Robin, M.B., Day, P., (1967) Adv. Inorg. Chem. Radiochem., 10, p. 247; Allen, G.C., Hush, N.S., (1967) Prog Inorg. Chem., 8, p. 357; Griffiths, T.R., Hubbard, H.V.St.A., Davies, M.J., (1994) Inorg. Chim. Acta, 225, p. 305; Gruen, D.M., McBeth, R.L., (1959) J. Inorg. Nucl. Chem., 9, p. 290; (1976) Powder Diffraction File, Inorganic Compounds, p. 553. , ed. L. G. Berry, Joint Committee on Powder Diffraction Standards, Swarthmore; Novoshinskaya, N.S., Vyrodov, I.P., Yunoshev, V.K., (1916) Zh. Prikl. Khim., 49, p. 1190; Novoshinskaya, N.S., Vyrodov, I.P., Yunoshev, V.K., (1974) Tr. Krasnodar. Politekh. Inst., 63, p. 71; Fujino, T., Ouchi, K., Yamashika, T., Natsume, H., (1983) J. Nucl. Mater., 116, p. 157; Toussaint, C.J., Avogadro, A., (1974) J. Inorg. Nucl. Chem., 36, p. 781; Carnall, W.T., Walker, A., Neufeldt, S.J., (1966) Inorg. Chem., 5, p. 2135; Cordfunke, E.H.P., Loopstra, B.O., (1971) J. Inorg. Nucl. Chem., 33, p. 2427; Kovba, L.M., (1971) Russ. J. Inorg. Chem., 16, p. 1639; Hauck, J., (1974) J. Inorg. Nucl. Chem., 36, p. 2291; Morgan, L.G., Burger, L.L., Sheele, R.D., Actiniae Separation (1980) ACS Symp. Ser., 117, p. 240. , ed. J. D. Navratil and W. W. Schulz, American Chemical Society, Washington, DC; Andersen, A.F., (1958) Acta Crystallogr., 11, p. 612; Allen, G.C., Griffiths, A.J., Van Der Heijden, A.N., (1981) Trans. Met. Chem. (Weinheim), 6, p. 355
Correspondence Address Griffiths, T.R.; School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
Language of Original Document English
Source Scopus