References |
Neikov, O.D., Nabojchenko, S.S., Murashova, I.B., Gopienko, V.G., Frishberg, I.V., Lotsko, D.V., (2009) Handbook of Non-ferrous Metal Powders. Technologies and Applications, , O.D. Neikov, Elsevier London, NY, Amsterdam; Barton, J.L., Bockris J.O', M., The electrolytic Growth of dendrites from ionic solutions (1962) Proc. R. Soc. Lond A, 268, pp. 485-505; Diggle, J.W., Despić, A.R., Bockris J.O', M., The mechanism of the dendritic crystallization of zinc (1969) J. Electrochem. Soc., 116, pp. 1503-1514; Nikolić, N.D., Popov, K.I., Pavlović, Lj.J., Pavlović, M.G., The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential (2006) J. Electroanal. Chem., 588, pp. 88-98; Nikolić, N.D., Pavlović, Lj.J., Pavlović, M.G., Popov, K.I., Formation of dish-like holes and a channel structure in electrodeposition of copper under hydrogen co-deposition (2007) Electrochim. Acta, 52, pp. 8096-8104; Nikolić, N.D., Branković, G., Pavlović, M.G., Popov, K.I., The effect of hydrogen co-deposition on the morphology of copper electrodeposits. II. Correlation between the properties of electrolytic solutions and the quantity of evolved hydrogen (2008) J. Electroanal. Chem., 621, pp. 13-21; Nikolić, N.D., Branković, G., Maksimović, V.M., Effect of the anodic current density on copper electrodeposition in the hydrogen co-deposition range by the reversing current (RC) regime (2011) J. Electroanal. Chem., 661, pp. 309-316; Nikolić, N.D., Branković, G., Popov, K.I., Optimization of electrolytic process of formation of open and porous copper electrodes by the pulsating current (PC) regime (2011) Mater. Chem. Phys., 125, pp. 587-594; Nikolić, N.D., Branković, G., Pavlović, M.G., Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen (2012) Powder Technol., 221, pp. 271-277; Sharifi, B., Mojtahedi, M., Goodarzi, M., Vahdati Khaki, J., Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder (2009) Hydrometallurgy, 99, pp. 72-77; Hsu, P.-C., Seol, S.-K., Lo, T.-N., Liu, C.-J., Wang, C.-L., Lin, C.-S., Hwu, Y., Margaritondo, G., Hydrogen bubbles and the growth morphology of ramified zinc by electrodeposition (2008) J. Electrochem. Soc., 155, pp. 400-407; Despic, A.R., Diggle, J., Bockris J', O.M., Mechanism of the formation of zinc dendrites (1968) J. Electrochem. Soc., 115, pp. 507-508; Popov, K.I., Maksimović, M.D., Trnjancev, J.D., Pavlović, M.G., Dendritic electrocrystallisation and mechanism of powder formation in the potentiostatic electrodeposition of metals (1981) J. Appl. Electrochem., 11, pp. 239-246; Murashova, I.B., Pomosov, A.V., Édeleva, N.A., Dynamic model of developing disperse deposit under galvanostatic conditions. Effect of acidity on the growth kinetics of dendrites (1979) Electrochemistry, 15, pp. 182-186; Murashova, I.B., Yakobuva, T.V., Gryazeva, N.V., Modeling electrocrystallization of loose deposit from water solution. Calculation of the growth dynamics of dendrites under galvanostatic electrolysis (1994) Electrochemistry, 30, pp. 1075-1080; Ostanina, T.N., Murashova, I.B., Kuz'Mina, E.E., Dynamics of growth of dendritic lead deposits on the cylindrical electrode (1996) Russ. J. Electrochem., 32, pp. 1227-1231; Murashova, I.B., Burkhanova, N.G., Structural changes in dendritic deposits during galvanostatic electrolysis: A calculation (2001) Russ. J. Electrochem., 37, pp. 746-751; Murashova, I.B., Darintseva, A.B., Rudoi, V.M., Analysis of growth dynamics of dendrite copper deposit in copper sulfate solutions under the galvanostatic conditions (2010) Russ. J. Electrochem., 46, pp. 611-618; Pomosov, A.V., Krymakova, E.E., Electrolysis conditions influence on current efficiency and the voltage on the bath while obtaining powder-like silver (1961) Poroshk. Metall., 6, pp. 27-34; Justinjanović, I.N., Jovicević, J.N., Despić, A.R., The effect of foreign atoms on the properties of electrolytic zinc powders (1973) J. Appl. Electrochem., 3, pp. 193-200; Osipova, M.L., Murashova, I.B., Darintseva, A.B., Onuchina, D.L., Current efficiency of dendritic copper powder (ΠMC 11) as the parameter controlling deposit's structure (2012) Electroplat. Surface Treat., XIX, pp. 35-41; Pomosov, A.V., Krymakova, E.E., Predicting the properties of electrolytic copper powder (1976) Poroshk. Metall., 6, pp. 1-4; Britz, D., (2005) Digital Simulation in Electrochemistry, , Springer Berlin Heidelberg; Vetter, K.J., (1967) Electrochemical Kinetics, Theoretical and Experimental Aspects, , Academic Press New York; Winand, R., Electrodeposition of metals and alloys - New results and perspectives (1994) Electrochim. Acta, 39, pp. 1091-1105. , 10.1016/0013-4686(94)E0023-S; Himmeblau, D., (1970) Process Analysis by Statistical Methods, , John Wiley and Sons Inc. New York - London - Sydney - Toronto |