Modelling the dynamic growth of copper and zinc dendritic deposits under the galvanostatic electrolysis conditions / Ostanina T.N., Rudoi V.M., Patrushev A.V., Darintseva A.B., Farlenkov A.S. // Journal of Electroanalytical Chemistry. - 2015. - V. 750, l. . - P. 9-18.

ISSN:
15726657
Type:
Article
Abstract:
This paper investigates the process of crystallisation of the copper and zinc dendritic deposits under galvanostatic conditions on the rod electrode. The effect of the value of current and metal ion concentration in solutions on the growth dynamics of loose deposits is studied. It is shown that the current efficiency of the metal increases, and the growth rate decreases during the elongation of dendritic particles, and an increase in the surface area on which the electrocrystallisation takes place. Empirical equations for the quantitative description of changes in time of the lengths of the dendrites and the current efficiency of copper and zinc are proposed, which well approximate the experimental data obtained under various conditions of electrolysis. A phenomenological model is worked out that helps to calculate the variation of structural parameters in time (the number and the radius of tips of the dendrite branches) of the loose deposit growth and to determine the moment of transition from a loose deposit to a compact one. © 2015 Elsevier B.V.All rights reserved.
Author keywords:
Copper; Current efficiency; Dendritic deposit; Empirical equation; Phenomenological model; Shell formation time; Zinc
Index keywords:
Copper; Deposits; Efficiency; Electrolysis; Metal ions; Zinc; Current efficiency; Empirical equations; Galvanostatic conditions; Galvanostatic electrolysis; Metal ion concentration; Phenomenological m
DOI:
10.1016/j.jelechem.2015.04.031
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929153408&doi=10.1016%2fj.jelechem.2015.04.031&partnerID=40&md5=1d67389cb03cf28b8cd10f9b6f1efde7
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929153408&doi=10.1016%2fj.jelechem.2015.04.031&partnerID=40&md5=1d67389cb03cf28b8cd10f9b6f1efde7
Affiliations Ural Federal University Named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation; Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
Author Keywords Copper; Current efficiency; Dendritic deposit; Empirical equation; Phenomenological model; Shell formation time; Zinc
References Neikov, O.D., Nabojchenko, S.S., Murashova, I.B., Gopienko, V.G., Frishberg, I.V., Lotsko, D.V., (2009) Handbook of Non-ferrous Metal Powders. Technologies and Applications, , O.D. Neikov, Elsevier London, NY, Amsterdam; Barton, J.L., Bockris J.O', M., The electrolytic Growth of dendrites from ionic solutions (1962) Proc. R. Soc. Lond A, 268, pp. 485-505; Diggle, J.W., Despić, A.R., Bockris J.O', M., The mechanism of the dendritic crystallization of zinc (1969) J. Electrochem. Soc., 116, pp. 1503-1514; Nikolić, N.D., Popov, K.I., Pavlović, Lj.J., Pavlović, M.G., The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential (2006) J. Electroanal. Chem., 588, pp. 88-98; Nikolić, N.D., Pavlović, Lj.J., Pavlović, M.G., Popov, K.I., Formation of dish-like holes and a channel structure in electrodeposition of copper under hydrogen co-deposition (2007) Electrochim. Acta, 52, pp. 8096-8104; Nikolić, N.D., Branković, G., Pavlović, M.G., Popov, K.I., The effect of hydrogen co-deposition on the morphology of copper electrodeposits. II. Correlation between the properties of electrolytic solutions and the quantity of evolved hydrogen (2008) J. Electroanal. Chem., 621, pp. 13-21; Nikolić, N.D., Branković, G., Maksimović, V.M., Effect of the anodic current density on copper electrodeposition in the hydrogen co-deposition range by the reversing current (RC) regime (2011) J. Electroanal. Chem., 661, pp. 309-316; Nikolić, N.D., Branković, G., Popov, K.I., Optimization of electrolytic process of formation of open and porous copper electrodes by the pulsating current (PC) regime (2011) Mater. Chem. Phys., 125, pp. 587-594; Nikolić, N.D., Branković, G., Pavlović, M.G., Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen (2012) Powder Technol., 221, pp. 271-277; Sharifi, B., Mojtahedi, M., Goodarzi, M., Vahdati Khaki, J., Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder (2009) Hydrometallurgy, 99, pp. 72-77; Hsu, P.-C., Seol, S.-K., Lo, T.-N., Liu, C.-J., Wang, C.-L., Lin, C.-S., Hwu, Y., Margaritondo, G., Hydrogen bubbles and the growth morphology of ramified zinc by electrodeposition (2008) J. Electrochem. Soc., 155, pp. 400-407; Despic, A.R., Diggle, J., Bockris J', O.M., Mechanism of the formation of zinc dendrites (1968) J. Electrochem. Soc., 115, pp. 507-508; Popov, K.I., Maksimović, M.D., Trnjancev, J.D., Pavlović, M.G., Dendritic electrocrystallisation and mechanism of powder formation in the potentiostatic electrodeposition of metals (1981) J. Appl. Electrochem., 11, pp. 239-246; Murashova, I.B., Pomosov, A.V., Édeleva, N.A., Dynamic model of developing disperse deposit under galvanostatic conditions. Effect of acidity on the growth kinetics of dendrites (1979) Electrochemistry, 15, pp. 182-186; Murashova, I.B., Yakobuva, T.V., Gryazeva, N.V., Modeling electrocrystallization of loose deposit from water solution. Calculation of the growth dynamics of dendrites under galvanostatic electrolysis (1994) Electrochemistry, 30, pp. 1075-1080; Ostanina, T.N., Murashova, I.B., Kuz'Mina, E.E., Dynamics of growth of dendritic lead deposits on the cylindrical electrode (1996) Russ. J. Electrochem., 32, pp. 1227-1231; Murashova, I.B., Burkhanova, N.G., Structural changes in dendritic deposits during galvanostatic electrolysis: A calculation (2001) Russ. J. Electrochem., 37, pp. 746-751; Murashova, I.B., Darintseva, A.B., Rudoi, V.M., Analysis of growth dynamics of dendrite copper deposit in copper sulfate solutions under the galvanostatic conditions (2010) Russ. J. Electrochem., 46, pp. 611-618; Pomosov, A.V., Krymakova, E.E., Electrolysis conditions influence on current efficiency and the voltage on the bath while obtaining powder-like silver (1961) Poroshk. Metall., 6, pp. 27-34; Justinjanović, I.N., Jovicević, J.N., Despić, A.R., The effect of foreign atoms on the properties of electrolytic zinc powders (1973) J. Appl. Electrochem., 3, pp. 193-200; Osipova, M.L., Murashova, I.B., Darintseva, A.B., Onuchina, D.L., Current efficiency of dendritic copper powder (ΠMC 11) as the parameter controlling deposit's structure (2012) Electroplat. Surface Treat., XIX, pp. 35-41; Pomosov, A.V., Krymakova, E.E., Predicting the properties of electrolytic copper powder (1976) Poroshk. Metall., 6, pp. 1-4; Britz, D., (2005) Digital Simulation in Electrochemistry, , Springer Berlin Heidelberg; Vetter, K.J., (1967) Electrochemical Kinetics, Theoretical and Experimental Aspects, , Academic Press New York; Winand, R., Electrodeposition of metals and alloys - New results and perspectives (1994) Electrochim. Acta, 39, pp. 1091-1105. , 10.1016/0013-4686(94)E0023-S; Himmeblau, D., (1970) Process Analysis by Statistical Methods, , John Wiley and Sons Inc. New York - London - Sydney - Toronto
Correspondence Address Ostanina, T.N.; Ural Federal University Named after the First President of Russia B.N. YeltsinRussian Federation; email: t.n.ostanina@urfu.ru
Publisher Elsevier B.V.
CODEN JECHE
Language of Original Document English
Abbreviated Source Title J Electroanal Chem
Source Scopus