The structure and magnetic properties of a heat-resistant nickel-base alloy after a high-temperature deformation / Stepanova N.N., Davydov D.I., Nichipuruk A.P., Rigmant M.B., Kazantseva N.V., Vinogradova N.I., Pirogov A.N., Romanov E.P. // Physics of Metals and Metallography. - 2011. - V. 112, l. 3. - P. 309-317.

ISSN:
0031918X
Type:
Article
Abstract:
The structure of a turbine blade made of the ChS-70V alloy has been studied after operation in an experimental regime at 880°C. A considerable change in the structural state of the alloy indicates the presence of an extremely high level of stresses in the material. During the operation, the magnetic susceptibility of the alloy increases by two orders of magnitude. The possible structure objects responsible for a change in the magnetic susceptibility are the complexes of superstructure intrinsic stacking faults inside the intermetallic phase. © 2011 Pleiades Publishing, Ltd.
Author keywords:
deformation; heat-resistant alloys; magnetic properties; stacking faults; structure
Index keywords:
heat-resistant alloys; High temperature deformation; Intermetallic phase; Intrinsic stacking fault; Nickel base alloys; Orders of magnitude; Structural state; Turbine blade; Deformation; Magnetic susc
DOI:
10.1134/S0031918X11030288
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80054952972&doi=10.1134%2fS0031918X11030288&partnerID=40&md5=6ab9ce1acf4d06c2f2df21ed17fb6588
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-80054952972&doi=10.1134%2fS0031918X11030288&partnerID=40&md5=6ab9ce1acf4d06c2f2df21ed17fb6588
Affiliations Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, Ekaterinburg 620990, Russian Federation
Author Keywords deformation; heat-resistant alloys; magnetic properties; stacking faults; structure
References Veksler, Yu.G., Kopylov, A.A., Bogaevskii, V.V., Structural Stability of Precipitation-Hardening Alloys (1987) Heat-Resistant and Refractory Metal Materials. Physicochemical Principles of Production, , O. A. Bannykh K. B. Povarova (eds). Nauka Moscow; Stoloff, N.S., Physical and Mechanical Metallurgy of Ni3Al and Its Alloys (1989) Int. Mater. Rev., 34 (4), pp. 153-184. , 1:CAS:528:DyaK3cXmtVOgug%3D%3D; Lesnikov, V.P., Kuznetsov, V.P., Corrosion-Resistant ChS70U-VI Alloy and Protective Coatings for Turboprop Engine Blades of Stationary and Ship's Turboengines (2007) Gazoturbin. Tekhn., (4), pp. 26-27; Skudnov, V.A., Tarasenko, Y.P., Berdnik, O.B., Choice of an Optimum Working Temperature of ChS70-VI and ChS88U-VI Nickel Alloys from Sinergy Point of View (2008) Tekhn. Met., (12), pp. 16-20; Rigmant, M.B., Gorkunov, V.S., Pudov, V.I., (2000) Byull. Izobret., (5). , RF Patent No. 2166191; Rigmant, M.B., Nichipuruk, A.P., Khudyakov, B.A., Ponomarev, V.S., Tereshchenko, N.A., Korkh, M.K., Instruments for Magnetic Phase Analysis of Articles Made of Austenitic Corrosion-Resistant Steels (2005) Russ. J. Nondestr. Test., 41, pp. 701-709. , 10.1007/s11181-006-0021-8 1:CAS:528:DC%2BD28XhvVCmtb4%3D; (2002) Turbines of Thermal and Atomic Electrical Stations, , V. V. Frolova A. G. Kostyuk (eds). Mosk. Energ. Inst. Moscow; Boer, F.R.D., Schinkel, C.J., Biesterbos, J., Proost, S., Exchange-Enhanced Paramagnetism and Weak Ferromagnetism in the Ni 3Al and Ni3Ga Phase (1969) J. Appl. Phys., 40, pp. 1049-1055. , 10.1063/1.1657528; Chowdhury, S.G., Ray, R.K., Jena, A.K., Structural Transformation in Ni3Al(B) due to Cold Rolling (1995) Scr. Metall. Mater., 32, pp. 1501-1506. , 10.1016/0956-716X(95)00195-2 1:CAS:528:DyaK2MXltFGru7c%3D; Kazantseva, N.V., Rigmant, M.B., Pirogov, A.N., Study of Magnetic Structural Phase Transformation upon Nickel Superalloy Deformation (2007) Fiz. Tekh. Vys. Davl., 17 (1), pp. 74-79. , 1:CAS:528:DC%2BD2sXht1eisb3I; Deryagin, A.I., Zavalishin, V.A., Sagaradze, V.V., Kuznetsov, A.R., Ivchenko, V.A., Vil'Danova, N.F., Efros, B.M., Effect of Composition and Temperature on the Redistribution of Alloying Elements in Fe-CrNi Alloys during Cold Deformation (2008) Phys. Met. Metallogr., 106, pp. 291-301. , 10.1134/S0031918X08090093; Zeng, Q., Baker, I., The effects of local versus bulk disorder on the magnetic behavior of stoichiometric Ni3Al (2007) Intermetallics, 15 (3), pp. 419-427. , DOI 10.1016/j.intermet.2006.08.010, PII S0966979506002548; Baker, I., Wu, D., Strain-Induced Ferromagnetism in L12 Compounds (2005) TSM Lett., 2, pp. 57-58. , 1:CAS:528:DC%2BD28XjvVyh; Umakoshi, Y., Yasuda, H.Y., Yanai, T., Quantitative Analysis of γ Precipitate in Cyclically Deformed Ni3(Al,Ti) Single Crystals Using Magnetic Technique (2004) Proc. MRS Fall Meeting-2004, 28 November-3 December 2004, Boston, USA, 842, pp. 231-236; (1965) Electron Microscopy of Thin Crystals, , P. B. Hirsch A. Howie R. B. Nicholson D. W. Pashley M. J. Whelan (eds). Butterworths London; Kazantseva, N.V., Vinogradova, N.I., Stepanova, N.N., Electron-Microscopic Study of Planar Defects in Ni3Al Single Crystal after High Temperature Deformation at 1200-1250°C (2010) Deform. Razrush. Mater., (9), pp. 1-6; Grigorov, S.N., Kosevich, V.M., Kosmachev, S.M., (1976) Electron-Microscopic Images of Dislocations and Stacking Faults, , Nauka Moscow
Correspondence Address Stepanova, N.N.; Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, Ekaterinburg 620990, Russian Federation
Language of Original Document English
Abbreviated Source Title Phys. Met. Metallogr.
Source Scopus