Giant magneto-elastic coupling in multiferroic hexagonal manganites / Lee S., Pirogov A., Kang M., Jang K.-H., Yonemura M., Kamiyama T., Cheong S.-W., Gozzo F., Shin N., Kimura H., Noda Y., Park J.-G. // Nature. - 2008. - V. 451, l. 7180. - P. 805-809.

ISSN:
00280836
Type:
Article
Abstract:
The motion of atoms in a solid always responds to cooling or heating in a way that is consistent with the symmetry of the given space group of the solid to which they belong1,2. When the atoms move, the electronic structure of the solid changes, leading to different physical properties. Therefore, the determination of where atoms are and what atoms do is a cornerstone of modern solid-state physics. However, experimental observations of atomic displacements measured as a function of temperature are very rare, because those displacements are, in almost all cases, exceedingly small 3-5. Here we show, using a combination of diffraction techniques, that the hexagonal manganites RMnO3 (where R is a rare-earth element) undergo an isostructural transition with exceptionally large atomic displacements: two orders of magnitude larger than those seen in any other magnetic material, resulting in an unusually strong magneto-elastic coupling. We follow the exact atomic displacements of all the atoms in the unit cell as a function of temperature and find consistency with theoretical predictions based on group theories. We argue that this gigantic magneto-elastic coupling in RMnO3 holds the key to the recently observed magneto-electric phenomenon in this intriguing class of materials6. © 2008 Nature Publishing Group.
Author keywords:
Index keywords:
нет данных
DOI:
10.1038/nature06507
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-67650710851&doi=10.1038%2fnature06507&partnerID=40&md5=affd6199618e9ac678f2b4bce5834e7e
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-67650710851&doi=10.1038%2fnature06507&partnerID=40&md5=affd6199618e9ac678f2b4bce5834e7e
Affiliations Department of Physics, SungKyunKwan University, Suwon 440-746, South Korea; Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-742, South Korea; Institute of Materials Structure Science, KEK, Tsukuba 305-0801, Japan; Rutgers Center for Emergent Materials, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, United States; Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland; Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 790-784, South Korea; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
References Hahn, T., (1996) International Tables for Crystallography, A. , Kluwer Academic, Amsterdam; Bruce, A.D., Cowley, R.A., (1981) Structural Phase Transitions, , Taylor & Francis, London; Scott, J.F., Soft-mode spectroscopy: Experimental studies of structural phase transitions (1974) Rev. Mod. Phys., 46, pp. 83-128; Wyckoff, R.W., (1986) Crystal Structures, , Krieger Publishing, New York; Mizokawa, T., Khomskii, D.I., Sawatzky, G.A., Interplay between orbital ordering and lattice distortions in LaMnO 3, YVO3, and YTiO3 (1999) Phys. Rev. B, 60, pp. 7309-7313; Lottermoser, T., Magnetic phase control by an electric field (2004) Nature, 430, pp. 541-544; Jin, S., Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films (1994) Science, 264, pp. 413-415; Gilleo, M.A., Crystallographic studies of perovskite-like compounds. III. La(M x,Mn1-x)O3 with M = Co, Fe and Cr (1957) Acta Crystallogr., 10, pp. 161-166; Yakel, H., Koehler, W., Bertaut, E., Forrat, F., On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium (1963) Acta Crystallogr., 16, pp. 957-962; Rai, R.C., Spin-charge coupling and the high-energy magnetodielectric effect in hexagonal HoMnO3 (2007) Phys. Rev. B, 75, p. 184414; Tokura, Y., Nagaosa, N., Orbital physics in transition-metal oxides (2000) Science, 288, pp. 462-468; Smolenskii, G.A., Chupis, I.E., Ferroelectromagnets (1982) Sov. Phys. Usp., 25, pp. 475-493; Park, J., Magnetic ordering and spin liquid state of YMnO3 (2003) Phys. Rev. B, 68, p. 104426; Sato, T.J., Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3 (2003) Phys. Rev. B, 68, p. 014432; Bertaut, E.F., Mercier, M., Structure magnetique de MnYO3 (1963) Phys. Lett., 5, pp. 27-29; Huang, Z.J., Cao, Y., Sun, Y.Y., Xue, Y.Y., Chu, C.W., Coupling between the ferroelectric and antiferromagnetic orders in YMnO3 (1997) Phys. Rev. B, 56, pp. 2623-2626; Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A.V., Pisarev, R.V., Observation of coupled magnetic and electric domains (2002) Nature, 419, pp. 818-820; Van Aken, B.B., Palstra, T.T.M., Influence of magnetic on ferroelectric ordering in LuMnO3 (2004) Phys. Rev. B, 69, p. 134113; Lee, S., Direct observation of a coupling between spin, lattice, and electric dipole moment in multiferroic YMnO3 (2005) Phys. Rev. B, 71, pp. 180413R; Sharma, P.A., Thermal conductivity of geometrically frustrated/ferroelectric YMnO 3: Evidence for extraordinary spin-phonon interactions (2004) Phys. Rev. Lett., 93, p. 177202; Dela Cruz, C., Strong spin-lattice coupling in multiferroic HoMnO3: Thermal expansion anomalies and pressure effect (2005) Phys. Rev. B, 71, pp. 060407R; Souchkov, A.B., Exchange intraction effects on the optical properties of LuMnO 3 (2003) Phys. Rev. Lett., 91, p. 027203; Ramirez, A.P., (2001) Handbook of Magnetic Materials, 13. , (ed. Buschow, K. J.) Ch. 4 Elsevier Science, Amsterdam; Eerenstein, W., Mathur, N.D., Scott, J.F., Multiferroic and magnetoelectric materials (2006) Nature, 442, pp. 759-765; Cheong, S.-W., Mostovoy, M., Multiferroic: A magnetic twist for ferroelectricity (2007) Nature Mater., 6, pp. 13-20; Gozzo, F., The instrumental resolution function of synchrotron radiation powder diffractometers in the presence of focusing optics (2006) J. Appl. Cryst., 39, pp. 347-357; Izumi, F., Ikeda, T., A Rietveld-analysis program RIETAN-98 and its applications to zeolites (2000) Mater. Sci. Forum, 321-324, pp. 198-203; Rodriguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction (1993) Physica B, 192, pp. 55-69
Correspondence Address Park, J.-G.; Department of Physics, SungKyunKwan University, Suwon 440-746, South Korea; email: jgpark@skku.edu
CODEN NATUA
Language of Original Document English
Abbreviated Source Title Nature
Source Scopus