Kumada catalyst-transfer poly condensation of thiophene-based oligomers: Robustness of a chain-growth mechanism / Beryozkina T., Senkovskyy V., Kaul E., Kiriy A. // Macromolecules. - 2008. - V. 41, l. 21. - P. 7817-7823.

ISSN:
00249297
Type:
Article
Abstract:
Polymerization of conjugated oligomers is an efficient approach for band gap engineering of conjugated polymers. On the other hand, a recently discovered chain-growth Ni-catalyzed Kumada polycondensation of monothiophenes becomes an important tool in engineering of macromolecular architectures. In this paper we evaluate the feasibility for chain-growth polycondensation of model monomers comprising one, two, or three thiophene rings. We found that Ph-Ni(PPh 3)2-Br-mediated polycondensations of HT-coupled bi- and terthiophenes lead predominantly to Ph-terminated polymers indicating the chain-growth polymerization mechanism. Although an increase of the monomer molecular length somewhat decreases the fraction of the Ph-terminated products as a result of increased probability of a chain-termination and chain-transfer reactions, chain-growth elementary steps remain dominating even for lengthy monomers. Such results reflect that in the key polycondensation step the Ni catalyst undergoes selective intramolecular "ring walking" along conjugated systems comprising two or even three thiophene rings. The chain-growth performance is sensitive to the substitution pattern of the polymerized oligomers. The best results were obtained with the monomers having alkyl substituents in an ortho (respective to the growing site) position possibly due to higher stabilities of intermediate ortho-substituted aryl-nickel complexes, and this knowledge might be helpful for proper design of conjugated oligomers polymerizable on the chain-growth manner. © 2008 American Chemical Society.
Author keywords:
Index keywords:
ABS resins; Catalysis; Chemical reactions; Conjugated polymers; Macromolecules; Monomers; Nickel; Nickel alloys; Oligomers; Polycondensation; Polymerization; Polymers; Thiophene; Alkyl substituents; B
DOI:
10.1021/ma801660x
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-56549121948&doi=10.1021%2fma801660x&partnerID=40&md5=562a67eb8ae7959685fa550cfde1825f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-56549121948&doi=10.1021%2fma801660x&partnerID=40&md5=562a67eb8ae7959685fa550cfde1825f
Affiliations Leibniz-Institut für Polymerforschung, Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
References Kiso, Y., Yamamoto, K., Tamao, K., Kumada, M., (1972) J. Am. Chem. Soc, 94, pp. 4374-4376; Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M., (2002) Chem. Rev, 102, pp. 1359-1470; Kiriy, N., Kiriy, A., Bocharova, V., Stamm, M., Richter, S., Plötner, M., Fischer, W.-J., Adler, H.-J., (2004) Chem. Mater, 16, pp. 4757-4764; Yokoyama, A., Miyakoshi, R., Yokozawa, T., (2004) Macromolecules, 37, pp. 1169-1171; Miyakoshi, R., Yokoyama, A., Yokozawa, T., (2005) J. Am. Chem. Soc, 127, pp. 17542-17547; Sheina, E.E., Liu, J., Iovu, M.C., Laird, D.W., McCullough, R.D., (2004) Macromolecules, 37, pp. 3526-3528; Iovu, M.C., Sheina, E.E., Gil, R.R., McCullough, R.D., (2005) Macromolecules, 38, pp. 8649-8656; (2002) Handbook of radical polymerization, , Matyjaszewski, K, Davis, T, Eds, Wiley-Interscience: Hoboken; Ivin, K.J., Mol, C.J., (1997) Olefin metathesis and metathesis polymerization, , Academic Press, London; Synthesis of all-conjugated polymers by chain-growth polycondensation; Zhang, Y., Tajima, K., Hirota, K., Hashimoto, K., (2008) J. Am. Chem. Soc, 130, pp. 7812-7813; Ohshimizu, K., Ueda, M., (2008) Macromolecules, 41, pp. 5289-5294; Handbook of Conducting Polymers (2007) Taylor & Francis Group, LLC, , 3rd ed, Skotheim, T. A, Reynolds, J. R, Eds, Boca Raton; Zenkina, O.V., Karton, A., Freeman, D., Shimon, L.J.W., Martin, J.M.L., van der Boom, M.E., (2008) Inorg. Chem, 47, pp. 5114-5121; Strawser, D., Karton, A., Zenkina, O.V., Iron, M.A., Shimon, L.J.W., Martin, J.M.L., van der Boom, M.E., (2005) J. Am. Chem. Soc, 127, pp. 9322-9322; Zenkina, O., Altman, M., Leitus, G., Shimon, L.J.W., Cohen, R., van der Boom, M.E., (2007) Organometallics, 26, pp. 4528-4534; Burdeniuk, J., Milstein, D., (1993) J. Organomet. Chem, 451, pp. 213-220; Tentatively, Yokozawa et al. proposed that the reactivity of the terminal C-Br bond at the oxidative addition step is higher than the reactivity of the C-Br bond of the monomer (due to a deactivating influence of the electron-donating magnesiumchloride group) that favors the preferential intramolecular transfer of the Ni0, see ref 3a; Senkovskyy, V., Khanduyeva, N., Komber, H., Oertel, U., Stamm, M., Kuckling, D., Kiriy, A., (2007) J. Am. Chem. Soc, 129, pp. 6626-6632; Roncali, J., (2007) Macromol. Rapid Commun, 28, pp. 1761-1775. , and references herein; Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., Belletete, M., Leclerc, M., (2008) J. Am. Chem. Soc, 130, pp. 732-742; Mullekom, H.A.M.V., Vekemans, J.A.J.M., Havinga, E.E., Meijer, E.W., (2001) Mater. Sci. Eng., R, 32, pp. 1-40; Hong, X.M., Tyson, C.J., Collard, D.M., (2000) Macromolecules, 33, pp. 3502-3504; Sheina, E.E., McCullough, R.D., (2004) Polym. Prepr, 45, pp. 800-801; It was previously demonstrated for related Suzuki chain-growth polycondensation having a similar catalyst-transfer mechanism that Pd(0) catalytic species are able to transfer intramolecularly over a 1 nm long fluorene moiety: (a) Calhorda, M. J, Brown, J. M, Cooley, N. A. Organometallics 1991, 10, 1431-1438; Dong, C.-G., Hu, Q.-S., (2005) J. Am. Chem. Soc, 127, pp. 10006-10007; Sinclair, D.J., Sherburn, M.S., (2005) J. Org. Chem, 70, pp. 3730-3733; Weber, S.K., Scherf, U., (2006) Org. Lett, 8, pp. 4039-4041; Yokoyama, A., Suzuki, H., Kubota, Y., Ohuchi, K., Higashimura, H., Yokozawa, T., (2007) J. Am. Chem. Soc, 129, pp. 7236-7237; Cremer, J., Mena-Osteritz, E., Pschierer, N.G., Müllen, K., Bäuerle, P., (2005) Org. Biomol. Chem, 3, pp. 985-995; Chaloner, P.A., Gunatunga, S.R., Hitchcock, P., (1997) J. Chem. Soc., Perkin Trans. 2, pp. 1597-1604; Loewe, R.S., Khersonsky, S.M., McCullough, R.D., (1999) Adv. Mater, 11, pp. 250-253; Miyakoshi, R., Yokoyama, A., Yokozawa, T., (2004) Macromol. Rapid Commun, 25, pp. 1663-1666; Loewe, R.S., Ewbank, P.C., Liu, J., Zhai, L., McCullough, R.D., (2001) Macromolecules, 34, pp. 4324-4333; Liu, J., Loewe, R.S., McCullough, R.D., (1999) Macromolecules, 32, pp. 5777-5785; Chen, T., Wu, X., Rieke, R., (1995) J. Am. Chem. Soc, 117, pp. 233-244; Montaudo, G., Scamporrino, E., Vitalizi, D., Mineo, P., (1998) Rapid Commun. Mass Spectrom, 10, p. 1551; Montaudo, G., Samperi, F., Montaudo, M.S., (2006) Prog. Polym. Sci, 31, pp. 277-278; Matyjaszewski, K., Gaynor, S., Wang, J.-S., (1995) Macromolecules, 28, pp. 2093-2095; An unintended mismatch between the relative amounts of 6 and tBuMgCl during the GRIM procedure is quite probable because of difficulties to dose precisely small portions of BuMgCl solution and a high sensitivity of BuMgCl to the moisture and air; Assignment and evaluations of 1H NMR spectra were performed as described for the experiment corresponding to entry 3, Table 1 (see also Supporting Information); For given conversions of the monomers (Table 1) DP values must not exceed 10 if the polycondensation proceeds via the step-growth mechanism. For example, at 90% conversion DP = 1/1-0.9 = 10 is expected: (a) Carothers, W. H. J. Am. Chem. Soc. 1929, 51, 2548-2559; Flory, P.J., (1953) Principles of Polymer Chemistry, , Cornell University Press: Ithaca, Chapters III and VIII; Since the mass of the Br atom (80) is close to the mass of the Ph moiety (77) the polymerization mixture was treated to tBuMgCl prior to MALDI-TOF measurements according to the procedure described by McCullough et al. to reduce any existing Br end groups. 1H NMR data confirmed a quantitative reduction of Br atoms, and thus, the signals with m/z = 499 + 78 belong to Ph/H-poly3a, whereas the signals with m/z = 499 + 2 belong to H/H-poly3a (Figure 2); [Ph-poly] = 5DP and S = [Ph-poly] 1/DP, where [Ph-poly] is the fraction of Ph-terminated products in the polymerization mixture, S is the selectivity of the chain-growth (intramolecular catalyst transfer) elementary step, and DP is the mean polymerization degree. .Sph.poly2a = [Ph-poly2a] 1/15 = 0.871/15 = 0.99 (99%); SPh-poly3a = [Ph-poly3a]1/12 = 0.691/12 = 0.97 (97%); S Ph-poly2b = [Ph-poly2b]1/10 = 0.451/10 = 0.923 (92.3%); Sph-poly3b = [Ph-poly3b]1/10 = 0.311/9 = 0.88 (88%); Hidai, M., Kashiwagi, T., Ikeuchi, T., Uchida, Y., (1971) J. Organomet. Chem, 30, pp. 279-282
Correspondence Address Kiriy, A.; Leibniz-Institut für Polymerforschung, Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; email: kiriy@ipfdd.de
CODEN MAMOB
Language of Original Document English
Abbreviated Source Title Macromolecules
Source Scopus