References |
Kiso, Y., Yamamoto, K., Tamao, K., Kumada, M., (1972) J. Am. Chem. Soc, 94, pp. 4374-4376; Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M., (2002) Chem. Rev, 102, pp. 1359-1470; Kiriy, N., Kiriy, A., Bocharova, V., Stamm, M., Richter, S., Plötner, M., Fischer, W.-J., Adler, H.-J., (2004) Chem. Mater, 16, pp. 4757-4764; Yokoyama, A., Miyakoshi, R., Yokozawa, T., (2004) Macromolecules, 37, pp. 1169-1171; Miyakoshi, R., Yokoyama, A., Yokozawa, T., (2005) J. Am. Chem. Soc, 127, pp. 17542-17547; Sheina, E.E., Liu, J., Iovu, M.C., Laird, D.W., McCullough, R.D., (2004) Macromolecules, 37, pp. 3526-3528; Iovu, M.C., Sheina, E.E., Gil, R.R., McCullough, R.D., (2005) Macromolecules, 38, pp. 8649-8656; (2002) Handbook of radical polymerization, , Matyjaszewski, K, Davis, T, Eds, Wiley-Interscience: Hoboken; Ivin, K.J., Mol, C.J., (1997) Olefin metathesis and metathesis polymerization, , Academic Press, London; Synthesis of all-conjugated polymers by chain-growth polycondensation; Zhang, Y., Tajima, K., Hirota, K., Hashimoto, K., (2008) J. Am. Chem. Soc, 130, pp. 7812-7813; Ohshimizu, K., Ueda, M., (2008) Macromolecules, 41, pp. 5289-5294; Handbook of Conducting Polymers (2007) Taylor & Francis Group, LLC, , 3rd ed, Skotheim, T. A, Reynolds, J. R, Eds, Boca Raton; Zenkina, O.V., Karton, A., Freeman, D., Shimon, L.J.W., Martin, J.M.L., van der Boom, M.E., (2008) Inorg. Chem, 47, pp. 5114-5121; Strawser, D., Karton, A., Zenkina, O.V., Iron, M.A., Shimon, L.J.W., Martin, J.M.L., van der Boom, M.E., (2005) J. Am. Chem. Soc, 127, pp. 9322-9322; Zenkina, O., Altman, M., Leitus, G., Shimon, L.J.W., Cohen, R., van der Boom, M.E., (2007) Organometallics, 26, pp. 4528-4534; Burdeniuk, J., Milstein, D., (1993) J. Organomet. Chem, 451, pp. 213-220; Tentatively, Yokozawa et al. proposed that the reactivity of the terminal C-Br bond at the oxidative addition step is higher than the reactivity of the C-Br bond of the monomer (due to a deactivating influence of the electron-donating magnesiumchloride group) that favors the preferential intramolecular transfer of the Ni0, see ref 3a; Senkovskyy, V., Khanduyeva, N., Komber, H., Oertel, U., Stamm, M., Kuckling, D., Kiriy, A., (2007) J. Am. Chem. Soc, 129, pp. 6626-6632; Roncali, J., (2007) Macromol. Rapid Commun, 28, pp. 1761-1775. , and references herein; Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., Belletete, M., Leclerc, M., (2008) J. Am. Chem. Soc, 130, pp. 732-742; Mullekom, H.A.M.V., Vekemans, J.A.J.M., Havinga, E.E., Meijer, E.W., (2001) Mater. Sci. Eng., R, 32, pp. 1-40; Hong, X.M., Tyson, C.J., Collard, D.M., (2000) Macromolecules, 33, pp. 3502-3504; Sheina, E.E., McCullough, R.D., (2004) Polym. Prepr, 45, pp. 800-801; It was previously demonstrated for related Suzuki chain-growth polycondensation having a similar catalyst-transfer mechanism that Pd(0) catalytic species are able to transfer intramolecularly over a 1 nm long fluorene moiety: (a) Calhorda, M. J, Brown, J. M, Cooley, N. A. Organometallics 1991, 10, 1431-1438; Dong, C.-G., Hu, Q.-S., (2005) J. Am. Chem. Soc, 127, pp. 10006-10007; Sinclair, D.J., Sherburn, M.S., (2005) J. Org. Chem, 70, pp. 3730-3733; Weber, S.K., Scherf, U., (2006) Org. Lett, 8, pp. 4039-4041; Yokoyama, A., Suzuki, H., Kubota, Y., Ohuchi, K., Higashimura, H., Yokozawa, T., (2007) J. Am. Chem. Soc, 129, pp. 7236-7237; Cremer, J., Mena-Osteritz, E., Pschierer, N.G., Müllen, K., Bäuerle, P., (2005) Org. Biomol. Chem, 3, pp. 985-995; Chaloner, P.A., Gunatunga, S.R., Hitchcock, P., (1997) J. Chem. Soc., Perkin Trans. 2, pp. 1597-1604; Loewe, R.S., Khersonsky, S.M., McCullough, R.D., (1999) Adv. Mater, 11, pp. 250-253; Miyakoshi, R., Yokoyama, A., Yokozawa, T., (2004) Macromol. Rapid Commun, 25, pp. 1663-1666; Loewe, R.S., Ewbank, P.C., Liu, J., Zhai, L., McCullough, R.D., (2001) Macromolecules, 34, pp. 4324-4333; Liu, J., Loewe, R.S., McCullough, R.D., (1999) Macromolecules, 32, pp. 5777-5785; Chen, T., Wu, X., Rieke, R., (1995) J. Am. Chem. Soc, 117, pp. 233-244; Montaudo, G., Scamporrino, E., Vitalizi, D., Mineo, P., (1998) Rapid Commun. Mass Spectrom, 10, p. 1551; Montaudo, G., Samperi, F., Montaudo, M.S., (2006) Prog. Polym. Sci, 31, pp. 277-278; Matyjaszewski, K., Gaynor, S., Wang, J.-S., (1995) Macromolecules, 28, pp. 2093-2095; An unintended mismatch between the relative amounts of 6 and tBuMgCl during the GRIM procedure is quite probable because of difficulties to dose precisely small portions of BuMgCl solution and a high sensitivity of BuMgCl to the moisture and air; Assignment and evaluations of 1H NMR spectra were performed as described for the experiment corresponding to entry 3, Table 1 (see also Supporting Information); For given conversions of the monomers (Table 1) DP values must not exceed 10 if the polycondensation proceeds via the step-growth mechanism. For example, at 90% conversion DP = 1/1-0.9 = 10 is expected: (a) Carothers, W. H. J. Am. Chem. Soc. 1929, 51, 2548-2559; Flory, P.J., (1953) Principles of Polymer Chemistry, , Cornell University Press: Ithaca, Chapters III and VIII; Since the mass of the Br atom (80) is close to the mass of the Ph moiety (77) the polymerization mixture was treated to tBuMgCl prior to MALDI-TOF measurements according to the procedure described by McCullough et al. to reduce any existing Br end groups. 1H NMR data confirmed a quantitative reduction of Br atoms, and thus, the signals with m/z = 499 + 78 belong to Ph/H-poly3a, whereas the signals with m/z = 499 + 2 belong to H/H-poly3a (Figure 2); [Ph-poly] = 5DP and S = [Ph-poly] 1/DP, where [Ph-poly] is the fraction of Ph-terminated products in the polymerization mixture, S is the selectivity of the chain-growth (intramolecular catalyst transfer) elementary step, and DP is the mean polymerization degree. .Sph.poly2a = [Ph-poly2a] 1/15 = 0.871/15 = 0.99 (99%); SPh-poly3a = [Ph-poly3a]1/12 = 0.691/12 = 0.97 (97%); S Ph-poly2b = [Ph-poly2b]1/10 = 0.451/10 = 0.923 (92.3%); Sph-poly3b = [Ph-poly3b]1/10 = 0.311/9 = 0.88 (88%); Hidai, M., Kashiwagi, T., Ikeuchi, T., Uchida, Y., (1971) J. Organomet. Chem, 30, pp. 279-282 |