References |
Handbook of Conducting Polymers (2007) Taylor & Francis Group, LLC, , 3rd ed, Skotheim, T. A, Reynolds, J. R, Eds, Boca Raton, FL; Forrest, S.R., (2004) Nature (London), 428, pp. 911-918; McQuade, D.T., Pullen, A.E., Swager, T.M., (2000) Chem. Rev, 100, pp. 2537-2574; Ho, H.A., Dore, K., Boissinot, M., Bergeron, M.G., Tanguay, R.M., Boudreau, D., Leclerc, M., (2005) J. Am. Chem. Soc, 127, pp. 12673-12676; Luzinov, I., Minko, S., Tsukruk, V.V., (2004) Prog. Polym. Sci, 29, pp. 635-698; Retsos, H., Senkovskyy, V., Kiriy, A., Stamm, M., Feldstein, M., Creton, C., (2006) Adv. Mater, 18, pp. 2624-2628; Retsos, H., Gorodyska, G., Kiriy, A., Stamm, M., Creton, C., (2005) Langmuir, 21, pp. 7722-7725; Pardo, D.A., Jabbour, G.E., Peyghambarian, N., (2000) Adv. Mater, 12, pp. 1249-1252; Hohnholz, D., Okuzaki, H., MacDiarmid, A.G., (2005) Adv. Funct. Mater, 15, pp. 51-56; Bocharova, V., Kiriy, A., Vinzelberg, H., Mönch, I., Stamm, M., (2005) Angew. Chem., Int. Ed, 44, pp. 6391-6394; Chen, Y., Kang, E.T., Neoh, K.G., Huang, W., (2001) Langmuir, 17, pp. 7425-7432; Lee, K., Cho, S., Park, S.H., Heeger, A.J., Lee, C.-W., Lee, S.-H., (2006) Nature (London), 441, pp. 65-68; Ouyang, J., Chu, C.-W., Chen, F.-C., Xu, Q., Yang, Y., (2005) Adv. Funct. Mater, 15, pp. 203-208; However, PEDOT can be used in electrochemical transistors or normally on field-effect transistors: (a) Nilsson, D.; Chen, M.; Kugler, T.; Remonen, T.; Armgarth, M.; Berggren, M. Adv. Mater. 2002, 14, 51-54; MacDiarmid, A.G., (2001) Angew. Chem., Int. Ed, 40, pp. 2581-2590; Panzer, M.J., Frisbie, C.D., (2007) J. Am. Chem. Soc, 129, pp. 6599-6607; Zhang, R., Li, B., Iovu, M.C., Jeffries-EL, M., Sauve, G., Cooper, J., Jia, S., Kowalewski, T., (2006) J. Am. Chem. Soc, 128, pp. 3480-3481; Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., (2005) Nat. Mater, 4, pp. 864-868; Inaoka, S., Collard, D.M., (1999) Langmuir, 15, pp. 3752-3758; Matyjaszewski, K., Davis, T., (2002) Handbook of Radical Polymerization, , Wiley-Interscience: New York; Edmondson, S., Osborne, V.L., Huck, W.T.S., (2004) Chem. Soc. Rev, 33, pp. 14-22; Luzinov, I., Minko, S., Tsukruk, V.V., (2004) Prog. Polym. Sci, 29, pp. 635-698; In this case the synthesis involves a statistical coupling of monomers and/or earlier formed oligomers: Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers; J. Wiley & Sons: New York, 1996; Hagberg, E.C., Carter, K.R., (2005) Polym. Prepr, 46, pp. 356-357; Beinhoff, M., Appapillai, A., Underwood, L., Frommer, E., Carter, K., (2006) Langmuir, 22, pp. 2411-2414; Sheina, E.E., Liu, J., Iovu, M.C., Laird, D.W., McCullough, R.D., (2004) Macromolecules, 37, pp. 3526-3528; Iovu, M.C., Sheina, E.E., Oil, R.R., McCullough, R.D., (2005) Macromolecules, 38, pp. 8649-8656; Yokoyama, A., Miyakoshi, R., Yokozawa, T., (2004) Macromolecules, 37, pp. 1169-1171; Miyakoshi, R., Yokoyama, A., Yokozawa, T., (2005) J. Am. Chem. Soc, 127, pp. 17542-17547; Kiso, Y., Yamamoto, K., Tamao, K., Kumada, M., (1972) J. Am. Chem. Soc, 94, pp. 4374-4376; Senkovskyy, V., Khanduyeva, N., Komber, H., Oertel, U., Stamm, M., Kuckling, D., Kiriy, A., (2007) J. Am. Chem. Soc, 129, pp. 6626-6632; Yoshida, E., (1996) J. Polym. Sci., Part A: Polym. Chem, 34, pp. 2937-2943; Iyer, K.S., Zdyrko, B., Malz, H., Pionteck, J., Luzinov, I., (2003) Macromolecules, 36, p. 6519; Marchant, S., Brakenbury, W.R.E., Horder, J., Foot, P.J.S., (1993) J. Mater. Sci. Lett, 12, pp. 1154-1155; Houbenov, N., Minko, S., Stamm, M., (2003) Macromolecules, 36, pp. 5897-5901; Azzam, R.M.A., Bashara, N.M., (1999) Ellipsometry and Polarized Light, , North Holland: Amsterdam; Nitschke, M., König, U., Lappan, U., Minko, S., Simon, F., Zschoche, S., Werner, C., (2007) J. Appl. Polym. Sci, 103, pp. 100-109; Köhler, K., Coburn, J.W., Horne, D.E., Kay, E., Keller, J.H., (1985) J. Appl. Phys, 57, pp. 59-64; Chu, W.K., Mayer, J.W., Nicolet, M.A., (1978) Backscattering Spectrometry, , Academic Press: New York; (1995) Handbook of Modern Ion Beam Analysis, , Tesmer, J. R, Nastasi, M, Eds, Materials Research Society: Pittsburgh; Duggan, J., Morgan, I.L., Eds, Musket, R.G., Felter, T.E., (2004) Nucl. Instrum. Methods Phys. Res. B, 379, p. 219; Mayer, M. SIMNRA a Simulation Program for the Analysis of NRA, RBS and ERDA. Proceedings of the 15th International Conference on the Application of Accelerators in Research and Industry; Duggan, J. L., Morgan, I. L., Eds.; Am. Inst. Phys. Conf. Proc. 1999, 475, 541-545; In all cases the thickness of the grafted P3HT means the increase of the film thickness after the polymerization of P3HT; thus, PS(Br) film with the initial thickness of 115 nm becomes 115, 150, 265 nm thick, as deduced by ellipsometry; They detached from Si support during the rinsing step resulting into PS(Br)-graft-P3HT free-standing films; Surface-initiated polymerizations of polyolefins usually do not require thick layers of initiators; living surface-initiated polymerizations show linear dependence of the thickness of the grafted polymer layers on the polymerization time; Trznadel, M., Pron, A., Zagorska, M., Chrzaszcz, R., Pielichowski, J., (1998) Macromolecules, 31, pp. 5051-5058; Kiriy, N., Jähne, E., Adler, H.-J., Schneider, M., Kiriy, A., Gorodyska, G., Minko, S., Stamm, M., (2003) Nano Lett, 3, pp. 707-712; Kiriy, N.; Kiriy, A.; Bocharova, V.; Stamm, M.; Richter, S.; Plötner, M.; Fischer; W, J.; Krebs, F. C.; Senkovska, I.; Adler, H.-J. Chem. Mater. 2004, 16, 4757-4764; DP was determined by 1H NMR; For example, comparing entries 5 and 6 in Table 1 and assuming the polymerization conditions in these two experiments to be identical, we can estimate the contribution of deepest layers of the PS(Br) of the sample 6 into the grafting process. Since the 84 nm thick PS(Br) film grafts 101 nm of P3HT (entry 5), whereas the 115 nm thick sample 6 gives 150 nm thick P3HT film, the contribution of the additional 31 nm thick PS(Br) in the sample 6 (115-84 nm) is responsible for the grafting of additional 39 nm of P3HT; 10.7% of O is found in PS(Br) sample. We cannot rule out possibility of oxidation of PS(Br) during UV cross-linking; however, this unlikely could explain the major part of the oxygen found, since even the sample after P3HT polymerization contains about 9% of O; Lee, W.P., Gundabala, V.R., Akpa, B.S., Johns, M.L., Jeynes, C., Routh, A.F., (2006) Langmuir, 22, pp. 5314-5320; Conductive atomic force microscopy (C-AFM). Veeco Metrology Group, Support No. 300, Rev. A; Wu, C.-G., Chang, S.-S., (2005) J Phys. Chem. B, 109, pp. 825-835; A detailed account of the conductive mode atomic force microscopy studies of the PS(Br)-graft-P3HT films will be published elsewhere |