Grafting of poly(3-hexylthiophene) from poly(4-bromostyrene) films by Kumada catalyst-transfer polycondensation: Revealing of the composite films structure / Khanduyeva N., Senkovskyy V., Beryozkina T., Bocharova V., Simon F., Nitschke M., Stamm M., Grötzschel R., Kiriy A. // Macromolecules. - 2008. - V. 41, l. 20. - P. 7383-7389.

ISSN:
00249297
Type:
Article
Abstract:
In order to achieve a stable, long-term operation of flexible electronic devices, it is necessary to firmly fix semiconductive conjugated polymers to plastic substrates, thus preventing their damage against delamination or chemical treatments. Surface-initiated Kumada catalyst-transfer polycondensation of 2-bromo5-chloromagnesio-3-alkylthiophene from photo-cross-linked poly(4-bromostyrene), PS(Br), films leads to covalent grafting of regioregular head-to-tail poly(3-hexylthiophene), P3HT. Herein, we investigate the grafting process in detail and elucidate the structure of the resulting composite films using ellipsometry, X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, and conductive mode atomic force microscopy techniques. In particular, we found that the grafting process is much more efficient if thick PS(Br) supporting layers are used. The maximal reachable thickness of the P3HT deposits is directly proportional to the thickness of the supporting PS(Br) layers. The obtained data suggest that the grafting process occurs not only at the PS(Br)/ polymerization solution interface but also deeply inside the swollen PS(Br) films, penetrable for the catalyst and for the monomer. The process results into a kind of interpenetrated PS(Br)/P3HT network in which relatively short (∼10 nm) P3HT grafts emanate from long cross-linked PS(Br) chains. The films show good stability against delamination, high electrical conductivity in the doped state, and high swellability that might be exploited for construction of fully "plastic" electronic devices and sensors. © 2008 American Chemical Society.
Author keywords:
Index keywords:
ABS resins; Atomic spectroscopy; Carrier mobility; Catalysis; Composite materials; Conducting polymers; Conductive films; Conjugated polymers; Crosslinking; Delamination; Electric conductivity; Grafti
DOI:
10.1021/ma800889c
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55649113337&doi=10.1021%2fma800889c&partnerID=40&md5=4c7ceb4a79a069bb4d58543a8a73f2ce
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-55649113337&doi=10.1021%2fma800889c&partnerID=40&md5=4c7ceb4a79a069bb4d58543a8a73f2ce
Affiliations Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany; Forschungszentrum Dresden-Rossendorf, Bautzener Landstrasse 128, 01328 Dresden, Germany
References Handbook of Conducting Polymers (2007) Taylor & Francis Group, LLC, , 3rd ed, Skotheim, T. A, Reynolds, J. R, Eds, Boca Raton, FL; Forrest, S.R., (2004) Nature (London), 428, pp. 911-918; McQuade, D.T., Pullen, A.E., Swager, T.M., (2000) Chem. Rev, 100, pp. 2537-2574; Ho, H.A., Dore, K., Boissinot, M., Bergeron, M.G., Tanguay, R.M., Boudreau, D., Leclerc, M., (2005) J. Am. Chem. Soc, 127, pp. 12673-12676; Luzinov, I., Minko, S., Tsukruk, V.V., (2004) Prog. Polym. Sci, 29, pp. 635-698; Retsos, H., Senkovskyy, V., Kiriy, A., Stamm, M., Feldstein, M., Creton, C., (2006) Adv. Mater, 18, pp. 2624-2628; Retsos, H., Gorodyska, G., Kiriy, A., Stamm, M., Creton, C., (2005) Langmuir, 21, pp. 7722-7725; Pardo, D.A., Jabbour, G.E., Peyghambarian, N., (2000) Adv. Mater, 12, pp. 1249-1252; Hohnholz, D., Okuzaki, H., MacDiarmid, A.G., (2005) Adv. Funct. Mater, 15, pp. 51-56; Bocharova, V., Kiriy, A., Vinzelberg, H., Mönch, I., Stamm, M., (2005) Angew. Chem., Int. Ed, 44, pp. 6391-6394; Chen, Y., Kang, E.T., Neoh, K.G., Huang, W., (2001) Langmuir, 17, pp. 7425-7432; Lee, K., Cho, S., Park, S.H., Heeger, A.J., Lee, C.-W., Lee, S.-H., (2006) Nature (London), 441, pp. 65-68; Ouyang, J., Chu, C.-W., Chen, F.-C., Xu, Q., Yang, Y., (2005) Adv. Funct. Mater, 15, pp. 203-208; However, PEDOT can be used in electrochemical transistors or normally on field-effect transistors: (a) Nilsson, D.; Chen, M.; Kugler, T.; Remonen, T.; Armgarth, M.; Berggren, M. Adv. Mater. 2002, 14, 51-54; MacDiarmid, A.G., (2001) Angew. Chem., Int. Ed, 40, pp. 2581-2590; Panzer, M.J., Frisbie, C.D., (2007) J. Am. Chem. Soc, 129, pp. 6599-6607; Zhang, R., Li, B., Iovu, M.C., Jeffries-EL, M., Sauve, G., Cooper, J., Jia, S., Kowalewski, T., (2006) J. Am. Chem. Soc, 128, pp. 3480-3481; Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., (2005) Nat. Mater, 4, pp. 864-868; Inaoka, S., Collard, D.M., (1999) Langmuir, 15, pp. 3752-3758; Matyjaszewski, K., Davis, T., (2002) Handbook of Radical Polymerization, , Wiley-Interscience: New York; Edmondson, S., Osborne, V.L., Huck, W.T.S., (2004) Chem. Soc. Rev, 33, pp. 14-22; Luzinov, I., Minko, S., Tsukruk, V.V., (2004) Prog. Polym. Sci, 29, pp. 635-698; In this case the synthesis involves a statistical coupling of monomers and/or earlier formed oligomers: Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers; J. Wiley & Sons: New York, 1996; Hagberg, E.C., Carter, K.R., (2005) Polym. Prepr, 46, pp. 356-357; Beinhoff, M., Appapillai, A., Underwood, L., Frommer, E., Carter, K., (2006) Langmuir, 22, pp. 2411-2414; Sheina, E.E., Liu, J., Iovu, M.C., Laird, D.W., McCullough, R.D., (2004) Macromolecules, 37, pp. 3526-3528; Iovu, M.C., Sheina, E.E., Oil, R.R., McCullough, R.D., (2005) Macromolecules, 38, pp. 8649-8656; Yokoyama, A., Miyakoshi, R., Yokozawa, T., (2004) Macromolecules, 37, pp. 1169-1171; Miyakoshi, R., Yokoyama, A., Yokozawa, T., (2005) J. Am. Chem. Soc, 127, pp. 17542-17547; Kiso, Y., Yamamoto, K., Tamao, K., Kumada, M., (1972) J. Am. Chem. Soc, 94, pp. 4374-4376; Senkovskyy, V., Khanduyeva, N., Komber, H., Oertel, U., Stamm, M., Kuckling, D., Kiriy, A., (2007) J. Am. Chem. Soc, 129, pp. 6626-6632; Yoshida, E., (1996) J. Polym. Sci., Part A: Polym. Chem, 34, pp. 2937-2943; Iyer, K.S., Zdyrko, B., Malz, H., Pionteck, J., Luzinov, I., (2003) Macromolecules, 36, p. 6519; Marchant, S., Brakenbury, W.R.E., Horder, J., Foot, P.J.S., (1993) J. Mater. Sci. Lett, 12, pp. 1154-1155; Houbenov, N., Minko, S., Stamm, M., (2003) Macromolecules, 36, pp. 5897-5901; Azzam, R.M.A., Bashara, N.M., (1999) Ellipsometry and Polarized Light, , North Holland: Amsterdam; Nitschke, M., König, U., Lappan, U., Minko, S., Simon, F., Zschoche, S., Werner, C., (2007) J. Appl. Polym. Sci, 103, pp. 100-109; Köhler, K., Coburn, J.W., Horne, D.E., Kay, E., Keller, J.H., (1985) J. Appl. Phys, 57, pp. 59-64; Chu, W.K., Mayer, J.W., Nicolet, M.A., (1978) Backscattering Spectrometry, , Academic Press: New York; (1995) Handbook of Modern Ion Beam Analysis, , Tesmer, J. R, Nastasi, M, Eds, Materials Research Society: Pittsburgh; Duggan, J., Morgan, I.L., Eds, Musket, R.G., Felter, T.E., (2004) Nucl. Instrum. Methods Phys. Res. B, 379, p. 219; Mayer, M. SIMNRA a Simulation Program for the Analysis of NRA, RBS and ERDA. Proceedings of the 15th International Conference on the Application of Accelerators in Research and Industry; Duggan, J. L., Morgan, I. L., Eds.; Am. Inst. Phys. Conf. Proc. 1999, 475, 541-545; In all cases the thickness of the grafted P3HT means the increase of the film thickness after the polymerization of P3HT; thus, PS(Br) film with the initial thickness of 115 nm becomes 115, 150, 265 nm thick, as deduced by ellipsometry; They detached from Si support during the rinsing step resulting into PS(Br)-graft-P3HT free-standing films; Surface-initiated polymerizations of polyolefins usually do not require thick layers of initiators; living surface-initiated polymerizations show linear dependence of the thickness of the grafted polymer layers on the polymerization time; Trznadel, M., Pron, A., Zagorska, M., Chrzaszcz, R., Pielichowski, J., (1998) Macromolecules, 31, pp. 5051-5058; Kiriy, N., Jähne, E., Adler, H.-J., Schneider, M., Kiriy, A., Gorodyska, G., Minko, S., Stamm, M., (2003) Nano Lett, 3, pp. 707-712; Kiriy, N.; Kiriy, A.; Bocharova, V.; Stamm, M.; Richter, S.; Plötner, M.; Fischer; W, J.; Krebs, F. C.; Senkovska, I.; Adler, H.-J. Chem. Mater. 2004, 16, 4757-4764; DP was determined by 1H NMR; For example, comparing entries 5 and 6 in Table 1 and assuming the polymerization conditions in these two experiments to be identical, we can estimate the contribution of deepest layers of the PS(Br) of the sample 6 into the grafting process. Since the 84 nm thick PS(Br) film grafts 101 nm of P3HT (entry 5), whereas the 115 nm thick sample 6 gives 150 nm thick P3HT film, the contribution of the additional 31 nm thick PS(Br) in the sample 6 (115-84 nm) is responsible for the grafting of additional 39 nm of P3HT; 10.7% of O is found in PS(Br) sample. We cannot rule out possibility of oxidation of PS(Br) during UV cross-linking; however, this unlikely could explain the major part of the oxygen found, since even the sample after P3HT polymerization contains about 9% of O; Lee, W.P., Gundabala, V.R., Akpa, B.S., Johns, M.L., Jeynes, C., Routh, A.F., (2006) Langmuir, 22, pp. 5314-5320; Conductive atomic force microscopy (C-AFM). Veeco Metrology Group, Support No. 300, Rev. A; Wu, C.-G., Chang, S.-S., (2005) J Phys. Chem. B, 109, pp. 825-835; A detailed account of the conductive mode atomic force microscopy studies of the PS(Br)-graft-P3HT films will be published elsewhere
Correspondence Address Kiriy, A.; Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany; email: kiriy@ipfdd.de
CODEN MAMOB
Language of Original Document English
Abbreviated Source Title Macromolecules
Source Scopus