ANALYSIS OF STOCHASTIC CYCLES IN THE CHEN SYSTEM / Bashkirtseva Irina,Chen Guanrong,Ryashko Lev // INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS. - 2010. - V. 20, l. 5. - P. 1439-1450.

ISSN/EISSN:
0218-1274 / нет данных
Type:
Article
Abstract:
We study the stochastically forced Chen system in its parameter zone under the transition to chaos via period-doubling bifurcations. We suggest a stochastic sensitivity function technique for the analysis of stochastic cycles. We show that this approach allows to construct the dispersion ellipses of random trajectories for any Poincare sections, and these ellipses reflect the essential features of a spatial arrangement of random trajectories near deterministic cycles. For the Chen system, we demonstrate a growth of stochastic sensitivity of the forced cycles under transition to chaos.
Author keywords:
Chen system; cycle; stochastic sensitivity; stochastic system LORENZ CANONICAL FORM; SENSITIVITY; STABILITY; CHAOS
DOI:
10.1142/S0218127410026587
Web of Science ID:
ISI:000279882400010
Соавторы в МНС:
Другие поля
Поле Значение
Month MAY
Publisher WORLD SCIENTIFIC PUBL CO PTE LTD
Address 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
Language English
Keywords-Plus LORENZ CANONICAL FORM; SENSITIVITY; STABILITY; CHAOS
Research-Areas Mathematics; Science \& Technology - Other Topics
Web-of-Science-Categories Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
ORCID-Numbers Chen, Guanrong/0000-0003-1381-7418
Funding-Acknowledgement RFBR {[}RFBR09-01-00026, 09-08-00048]; Federal Education Agency {[}2.1.1/2571]; Federal Target Program {[}02.740.11.0202]
Funding-Text This research was partially supported by grants RFBR09-01-00026, 09-08-00048, the Federal Education Agency 2.1.1/2571, and Federal Target Program No. 02.740.11.0202.
Number-of-Cited-References 20
Usage-Count-Since-2013 7
Journal-ISO Int. J. Bifurcation Chaos
Doc-Delivery-Number 625GG