Exponential mean square stability of stochastically forced invariant manifolds for nonlinear SDEs / Ryashko L. B. // STOCHASTICS AND DYNAMICS. - 2007. - V. 7, l. 3. - P. 389-401.

ISSN/EISSN:
0219-4937 / нет данных
Type:
Article
Abstract:
An exponential mean square stability for the invariant manifold M of a nonlinear stochastic system is considered. The stability analysis is based on the M-quadratic Lyapunov function technique. The local dynamics of the nonlinear system near manifold is described by the stochastic linear extension system. We propose a general notion of the projective stability (P-stability) and prove the following theorem. The smooth compact manifold M is exponentially mean square stable if and only if the corresponding stochastic linear extension system is P-stable.
Author keywords:
stability; invariant manifolds; stochastic systems
DOI:
10.1142/S0219493707002098
Web of Science ID:
ISI:000251284600006
Соавторы в МНС:
Другие поля
Поле Значение
Month SEP
Publisher WORLD SCIENTIFIC PUBL CO PTE LTD
Address 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
Language English
Research-Areas Mathematics
Web-of-Science-Categories Statistics \& Probability
Number-of-Cited-References 14
Journal-ISO Stoch. Dyn.
Doc-Delivery-Number 236EA