Preparation and properties of silicon- and titanium-containing hybrid nanocomposite films based on ethyl cellulose / Suvorova A. I.,Sharafeeva A. R.,Suvorov A. L.,Tyukova I. S.,Lirova B. I. // POLYMER SCIENCE SERIES A. - 2013. - V. 55, l. 7. - P. 438-445.

ISSN/EISSN:
0965-545X / нет данных
Type:
Article
Abstract:
Nanocomposite hybrid films containing silicon and titanium compounds in the polymer matrix are prepared through the sol-gel method via the hydrolytic polycondensation of Si and Ti alkoxides (tetraethoxysilane and titanium tetrabutoxide) in the THF solution of a hydrophobic polymer, ethyl cellulose. Their structure and properties are studied with the use of a complex of physicochemical methods. During the hydrolysis of tetraethoxysilane and the subsequent polycondensation of the reaction products, silicon atoms are incorporated into the polymer and form -O-Si-O-bonds involving hydroxyl groups of ethyl cellulose. In the sol-gel method, titanium alkoxide yields nanosized particles of titanium dioxide that play the role of fillers in the polymer matrix. Titanium-containing films show solubility in THF and, after prolonged contact with the solvent, precipitate titanium dioxide from the solution. Hybrid films containing silicon are insoluble owing to the formation of a chemical network between polymer molecules and Si-OH groups of the products of hydrolysis of silicon alkoxide, as confirmed by the IR data. It is shown that the amounts and types of alkoxides and the diameters of the structures formed in the polymer matrix via the sol-gel procedure affect the hydrophilicity levels of ethyl cellulose hybrid films and their abilities to swell in water and aqueous solutions of organic dyes (brilliant blue and methylene blue). Ethyl cellulose hybrid films are hydrophilic, and they facilitate the removal of dye molecules from aqueous solutions. The best properties are featured by the films containing nanosized particles of titanium dioxide in the polymer matrix.
Author keywords:
SOL-GEL PROCESS; PERVAPORATION SEPARATION; POLYVINYL-CHLORIDE; MEMBRANES; TETRAETHOXYSILANE; MIXTURES
DOI:
10.1134/S0965545X13070043
Web of Science ID:
ISI:000321789500002
Соавторы в МНС:
Другие поля
Поле Значение
Month JUL
Publisher MAIK NAUKA/INTERPERIODICA/SPRINGER
Address 233 SPRING ST, NEW YORK, NY 10013-1578 USA
Language English
Keywords-Plus SOL-GEL PROCESS; PERVAPORATION SEPARATION; POLYVINYL-CHLORIDE; MEMBRANES; TETRAETHOXYSILANE; MIXTURES
Research-Areas Polymer Science
Web-of-Science-Categories Polymer Science
Author-Email Anna.Suvorova@usu.ru
Funding-Acknowledgement Russian Foundation of Basic Research {[}08-03-00552]
Funding-Text This work was supported by the Russian Foundation of Basic Research, project no. 08-03-00552.
Number-of-Cited-References 27
Usage-Count-Last-180-days 1
Usage-Count-Since-2013 19
Journal-ISO Polym. Sci. Ser. A
Doc-Delivery-Number 183BV