A Parallel Matrix Sweep Algorithm for Solving Linear Systems with Block-Fivediagonal Matrices / Akimova Elena N. // . - 2015. - V. 1648, l. .

ISSN/EISSN:
0094-243X / нет данных
Type:
Proceedings Paper
Abstract:
To solve linear systems of equations with block-fivediagonal matrices, a new stable direct parallel matrix sweep algorithm is constructed. The theorem about the superposition principle for solutions in subdomains is proved. This algorithm is applied to solve geoelectrics and diffusion problems using parallel computing systems.
Author keywords:
Matrix sweep method; parallel algorithm; block-fivediagonal SLAE; superposition principle; geoelectrics and diffusion problems
DOI:
10.1063/1.4913083
Web of Science ID:
ISI:000355339705080
Соавторы в МНС:
Другие поля
Поле Значение
Editor Simos, TE and Tsitouras, C
Booktitle PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014)
Series AIP Conference Proceedings
Note International Conference on Numerical Analysis and Applied Mathematics (ICNAAM), Rhodes, GREECE, SEP 22-28, 2014
Publisher AMER INST PHYSICS
Address 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
Language English
Article-Number UNSP 850028
ISBN 978-0-7354-1287-3
Research-Areas Mathematics; Physics
Web-of-Science-Categories Mathematics, Applied; Physics, Applied
ORCID-Numbers Akimova, Elena/0000-0002-4462-5817
Number-of-Cited-References 2
Usage-Count-Since-2013 14
Doc-Delivery-Number BC7YA