ON ABELIAN REPETITION THRESHOLD / Samsonov Alexey V.,Shur Arseny M. // RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS. - 2012. - V. 46, l. 1, SI. - P. 147-163.

ISSN/EISSN:
0988-3754 / нет данных
Type:
Article
Abstract:
We study the avoidance of Abelian powers of words and consider three reasonable generalizations of the notion of Abelian power to fractional powers. Our main goal is to find an Abelian analogue of the repetition threshold, i.e., a numerical value separating k-avoidable and k-unavoidable Abelian powers for each size k of the alphabet. We prove lower bounds for the Abelian repetition threshold for large alphabets and all definitions of Abelian fractional power. We develop a method estimating the exponential growth rate of Abelian-power-free languages. Using this method, we get non-trivial lower bounds for Abelian repetition threshold for small alphabets. We suggest that some of the obtained bounds are the exact values of Abelian repetition threshold. In addition, we provide upper bounds for the growth rates of some particular Abelian-power-free languages.
Author keywords:
Repetition threshold; formal languages; avoidable repetitions; Abelian powers DEJEANS CONJECTURE; WORDS; NUMBER
DOI:
10.1051/ita/2011127
Web of Science ID:
ISI:000301345900012
Соавторы в МНС:
Другие поля
Поле Значение
Month JAN
Publisher CAMBRIDGE UNIV PRESS
Address 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
Language English
Keywords-Plus DEJEANS CONJECTURE; WORDS; NUMBER
Research-Areas Computer Science
Web-of-Science-Categories Computer Science, Information Systems
Author-Email vonosmas@gmail.com Arseny.Shur@usu.ru
Number-of-Cited-References 18
Usage-Count-Last-180-days 2
Usage-Count-Since-2013 9
Journal-ISO Rairo-Theor. Inform. Appl.
Doc-Delivery-Number 906LE