ON THE EXISTENCE OF MINIMAL beta-POWERS / Shur Arseny M. // INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE. - 2011. - V. 22, l. 7, SI. - P. 1683-1696.

ISSN/EISSN:
0129-0541 / нет данных
Type:
Article
Abstract:
If all proper factors of a word u are beta-power-free while u itself is not, then u is a minimal beta-power. We consider the following general problem: for which numbers k, beta, and p there exists a k-ary minimal beta-power of period p? For the case beta >= 2 we completely solve this problem. If the number beta < 2 is relatively ``big{''} w.r.t. k, we show that any number p can be the period of a minimal beta-power. Finally, for ``small{''} beta we describe some sets of forbidden periods and provide a numerical evidence that for k >= 9 these sets are almost exhaustive.
Author keywords:
Formal languages; power free words; minimal powers; circular words WORDS
DOI:
10.1142/S0129054111008969
Web of Science ID:
ISI:000297580200014
Соавторы в МНС:
Другие поля
Поле Значение
Month NOV
Publisher WORLD SCIENTIFIC PUBL CO PTE LTD
Address 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
Language English
Keywords-Plus WORDS
Research-Areas Computer Science
Web-of-Science-Categories Computer Science, Theory \& Methods
Author-Email arseny.shur@usu.ru
Number-of-Cited-References 18
Journal-ISO Int. J. Found. Comput. Sci.
Doc-Delivery-Number 855QV