On ternary square-free circular words / Shur Arseny M. // ELECTRONIC JOURNAL OF COMBINATORICS. - 2010. - V. 17, l. 1.

ISSN/EISSN:
1077-8926 / нет данных
Type:
Article
Abstract:
Circular words are cyclically ordered finite sequences of letters. We give a computer-free proof of the following result by Currie: square-free circular words over the ternary alphabet exist for all lengths l except for 5, 7, 9, 10, 14, and 17. Our proof reveals an interesting connection between ternary square-free circular words and closed walks in the K(3,3) graph. In addition, our proof implies an exponential lower bound on the number of such circular words of length l and allows one to list all lengths l for which such a circular word is unique up to isomorphism.
Author keywords:
нет данных
DOI:
нет данных
Web of Science ID:
ISI:000283445900002
Соавторы в МНС:
Другие поля
Поле Значение
Month OCT 22
Publisher ELECTRONIC JOURNAL OF COMBINATORICS
Address C/O FELIX LAZEBNIK, RM 507, EWING HALL, UNIV DELAWARE, DEPT MATHEMATICAL SCIENCES, NEWARK, DE 19716 USA
Language English
Article-Number R140
Research-Areas Mathematics
Web-of-Science-Categories Mathematics, Applied; Mathematics
Author-Email arseny.shur@usu.ru
Number-of-Cited-References 7
Journal-ISO Electron. J. Comb.
Doc-Delivery-Number 670RV