On the Existence of Minimal beta-Powers / Shur Arseny M. // . - 2010. - V. 6224, l. . - P. 411-422.

ISSN/EISSN:
0302-9743 / нет данных
Type:
Proceedings Paper
Abstract:
If all proper factors of a word u are beta-power-free while u itself is not, then u is a minimal beta-power. We consider the following general problem: for which numbers k, beta, and p there exists a k-ary minimal beta-power of period p? For the case beta >= 2 we completely solve this problem. If the number beta < 2 is relatively ``big{''} w.r.t. k, we show that any number p can be the period of a minimal beta-power. Finally, for ``small{''} beta we describe some sets of forbidden periods and provide a numerical evidence that for k >= 9 these sets are almost exhaustive.
Author keywords:
GROWTH-RATES; WORDS; LANGUAGES
DOI:
нет данных
Web of Science ID:
ISI:000286402700037
Соавторы в МНС:
Другие поля
Поле Значение
Editor Gao, Y and Lu, H and Seki, S and Yu, S
Booktitle DEVELOPMENTS IN LANGUAGE THEORY
Series Lecture Notes in Computer Science
Note 14th International Conference on Developments in Language Theory, Univ Western Ontario, London, CANADA, AUG 17-20, 2010
Organization Univ Western Ontario; Fields Inst; European Assoc Theoret Comp Sci; Academia Europaea; Res Western
Publisher SPRINGER-VERLAG BERLIN
Address HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
Language English
ISBN 978-3-642-14454-7
Keywords-Plus GROWTH-RATES; WORDS; LANGUAGES
Research-Areas Computer Science
Web-of-Science-Categories Computer Science, Theory \& Methods
Number-of-Cited-References 18
Doc-Delivery-Number BTB71