ON THE GROWTH RATES OF COMPLEXITY OF THRESHOLD LANGUAGES / Shur Arseny M.,Gorbunova Irina A. // RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS. - 2010. - V. 44, l. 1, SI. - P. 175-192.

ISSN/EISSN:
0988-3754 / нет данных
Type:
Article; Proceedings Paper
Abstract:
Threshold languages, which are the (k/(k-1))(+)-free languages over k-letter alphabets with k >= 5, are the minimal infinite power-free languages according to Dejean's conjecture, which is now proved for all alphabets. We study the growth properties of these languages. On the base of obtained structural properties and computer-assisted studies we conjecture that the growth rate of complexity of the threshold language over k letters tends to a constant (alpha) over cap approximate to 1.242 as k tends to infinity.
Author keywords:
Power-free languages; Dejean's conjecture; threshold languages; combinatorial complexity; growth rate DEJEANS CONJECTURE; WORDS
DOI:
10.1051/ita/2010012
Web of Science ID:
ISI:000274411700012
Соавторы в МНС:
Другие поля
Поле Значение
Month JAN-MAR
Note 12th Mons Theoretical Computer Science Conference, Mons, BELGIUM, AUG 27-30, 2008
Publisher EDP SCIENCES S A
Address 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE
Language English
Keywords-Plus DEJEANS CONJECTURE; WORDS
Research-Areas Computer Science
Web-of-Science-Categories Computer Science, Information Systems
Author-Email Arseny.Shur@usu.ru
Number-of-Cited-References 18
Journal-ISO Rairo-Theor. Inform. Appl.
Doc-Delivery-Number 554BY